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Abstract

Maintenance genes can be used for normalization in the comparison of gene expressions.
Even though the absolute expression levels of maintenance genes may vary considerably among
different tissues or cells, a set of maintenance genes may provide suitable normalization if their
expression levels are relatively constant in the specific tissues or cells of interest. A statistical
procedure is proposed to select maintenance genes for normalization of gene expression data from
tissues or cells of interest. This procedure is based on simultaneous confidence intervals for prac-
tical equivalence of relative gene expressions in these tissues or cells. As an illustration, the
procedure is applied to the maintenance gene expression data from Vandesompele et al. (2002).
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1 Motivation

In carrying out comparisons of gene expression data from RNA quantification,
such as microarray data, normalization is of great importance, because dur-
ing the sample preparation, the labelling process, the hybridization process,
and the scanning process, there are large numbers of potential sources of sys-
tematic variation that need to be removed to make the gene expression data
comparable. Normalization removes systematic, or non-biological, sources of
variation so that differences in gene expression levels truly reflect biological
variation.

Various gene sets have been used for gene expression normalization, such as
all genes, maintenance genes and spiked controls (Yang et al. 2001). Among
these, maintenance genes are frequently used. Maintenance genes, or house-
keeping genes, are defined as those genes critical to the maintenance of cellular
functions. These genes are presumably expressed in all tissues or cells. One
major issue in maintenance gene normalization is that expression levels of
maintenance genes vary considerably among different tissues or cells. Take
a widely used maintenance gene, Glyceraldehyde-3-phosphate dehydrogenase
(GAPDH), as an example. Bhatia et al. (1994) found that GAPDH gene
expression levels are remarkably different between tumorigenic and metastatic
cells.

However, for specific tissues or cells in the experiment of interest, it may be
possible to find a set of maintenance genes for which the expression ratios of
any two of them are approximately identical in the tissues or cells of interest.
Such a set of maintenance genes can be used for normalization of gene expres-
sion data from the tissues or cells of interest. This study describes how to
select, from preselected possible maintenance genes out of different functional
classes, a set of maintenance genes with approximately constant expression
ratios in given tissues or cells, statistically. The proposed methodology is gen-
eral, in that it can be used to select experiment specific maintenance genes for
particular tissues or cells of interest.

2 Formulation of the Problem

Suppose there are several tissues under consideration. Two maintenance genes
ideal for normalization would have constant expression ratios over the tissues.
A sample interaction plot of gene expression levels is shown in Figure 1 (a).
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Figure 1: Interaction plots of expression levels and log expression levels of
two maintenance genes in different tissues. (a) The expression ratios of the
two maintenance genes are constant over the tissues. (b) The lines in the
interaction plot are parallel to each other, indicating that the log expression
differences of the two maintenance genes are constant over the tissues.

After logarithmic transformation of such gene expression data, the log expres-
sion differences of the two genes are constant over the tissues. Consequently,
lines in the interaction plot of log expression levels are parallel to each other,
as shown in Figure 1 (b). Parallelism of the lines indicates no interaction.
Maintenance genes with small interaction should be selected for normalization
of gene expression data from given tissues or cells.

To define a statistical measure of interaction, let Yijr denote the log (base
2) expression level of the rth observation on the ith gene in the j th tissue. We
model Yijr as follows.

Yijr = τij + εijr, i = 1, . . . , I, j = 1, . . . , J, r = 1, . . . , nij (1)

where τij represents the expected log expression level of the ith gene in the j th
tissue, that is, the log expression level that would always be obtained for the
ith gene in the j th tissue under identical experiment condition and without
measurement error. The τij’s are considered to be fixed parameters which are
unknown but can be estimated from gene expression data.

The interaction contrasts

θsk
ij = (τis − τjs) − (τik − τjk), i < j, s < k (2)
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measure lack of parallelism of the lines in the interaction plot of log expression
levels, that is, θsk

ij measures the interaction of gene i and gene j in tissue s and
tissue k. Therefore, maintenance genes with small interaction in given tissues
or cells are explicitly defined to be those with small values of |θsk

ij |.
In (1), εijr is the experimental error present in the rth observation on the

ith gene in the j th tissue, which is a random variable with mean zero. We will
determine what assumptions on εijr would make inference on θsk

ij equivalent to
inference on difference of expression ratios of gene i over gene j between tissue
s and tissue k. The appropriateness of the assumptions can be examined by
residual plots or other diagnostic methods.

Let Xij and µij denote the observed and expected expression level of the
ith gene in the j th tissue. Similarly, let Yij and τij denote the observed and
expected log expression level of the ith gene in the j th tissue. Then Yij =
log2Xij.

Consider gene i and gene j in tissue s and tissue k. If the distribution
of Yis differs from the distribution of Yjs by a location shift only, that is, Yis

and Yjs + δs are distributed as Fs, then τis − τjs = δs. Since Yis
d
= Yjs + δs,

Xis
d
= eδsXjs. Thus, µis/µjs = eδs . Similarly, If the distribution of Yik differs

from the distribution of Yjk by a location shift only, that is, Yik and Yjk + δk

are distributed as Fk, which may be different from Fs, then τik − τjk = δk.

Consequently, Xik
d
= eδkXjk and µik/µjk = eδk .

If we infer

θsk
ij = (τis − τjs) − (τik − τjk) = δs − δk = 0,

that is, gene i and gene j have no interaction in tissue s and tissue k, then

µis/µjs

µik/µjk

= eδs−δk = 1,

that is, gene i and gene j have identical expression ratios over tissue s and
tissue k.

Therefore, if the assumptions εijr ∼ Fj, j = 1, . . . , J, are satisfied, then

inference on θsk
ij corresponds to inference on

µis/µjs

µik/µjk
. Also, if we write θsk

ij =

(τis−τik)− (τjs−τjk), then inference on θsk
ij corresponds to inference on µis/µik

µjs/µjk

with εijr ∼ Gi, i = 1, . . . , I.
So, inference on difference of expected log expression differences θsk

ij corre-
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sponds to inference on ratio of the ratios of expected expression levels if the
distributions of log expression levels in the same tissue have identical shape
and possibly shifted locations for different genes, or the distributions of log
expression levels of the same gene have identical shape and possibly shifted
locations for different tissues.

To be able to investigate the variability of the expression level of gene
i in tissue j, that is, the distribution of εijr, replicated observations on the
expression of gene i in tissue j are necessary. Replication is not a waste of
scientific resources. Instead, it is essential to obtain valid statistical inferences.
It not only enables us to characterize the random variation in gene expression,
but also gives us more accurate estimation of gene expression levels because
the variance of the averaged observations is smaller than the variance of the
individual observation.

3 Proposed Statistical Method

Our desired inference is to identify those θsk
ij ’s with absolute values small

enough to allow the corresponding maintenance genes to be used for normal-
ization of gene expression data from the corresponding tissues. In addition,
the contrast θsk

ij is the difference of τis − τjs and τik − τjk.
Consider testing

H0 : θsk
ij = 0 vs. Ha : θsk

ij �= 0 (3)

at level-α and inferring that |θsk
ij | is small if H0 : θsk

ij = 0 is accepted. Suppose

εijr
iid∼ N(0, σ2). If the two-sided size-α t-test is used, then |θsk

ij | is claimed to
be small when

|θ̂sk
ij |

SE(θsk
ij )

=
|(ȳis. − ȳjs.) − (ȳik. − ȳjk.)|
σ̂
√

( 1
nis

+ 1
njs

+ 1
nik

+ 1
njk

)
≤ tα/2,ν (4)

where ȳis. =
∑nis

r=1 yisr/nis is the average log expression level of ith gene in sth
tissue, and tα/2,ν is the upper 100α/2 percentile of a Student’s t distribution
with ν degrees of freedom. Regardless of the value of θsk

ij , the probability of
(4) increases as the sample sizes decrease. That is, even when the true value of
θsk

ij is away from zero, this test procedure might infer that |θsk
ij | is small if the

sample sizes are small, which is usually the case in microarray experiments.
So one might consider reversing the null and alternative hypotheses, and
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test
H0 : θsk

ij �= 0 vs. Ha : θsk
ij = 0.

But θsk
ij = 0 requires infinitely many samples to verify. It is practically impos-

sible and unnecessarily stringent. Therefore, this is an equivalence problem in
which the usual test for (3) is not of interest (Berger and Hsu, 1996). We will
test instead

H0 : |θsk
ij | ≥ δ vs. Ha : |θsk

ij | < δ (5)

where δ is a predetermined positive value, defining practical equivalence of the
gene expression levels.

For example, if we infer that |θ12
23|, |θ13

23| and |θ23
23| are all less than δ, then

gene 2 and gene 3 have small interaction in tissues 1, 2 and 3. These two main-
tenance genes can be used for gene expression normalization in experiments
involving tissues 1, 2 and 3.

In our opinion, the determination of a δ value may be done by analogy to
the choice of a clinically meaningful difference in clinical trials, where there are
three types of controls: negative control, active control, and positive control
(see the international guidance ICH E10).

Negative controls in clinical trials are placebos. Using maintenance genes
to normalize gene expressions, as in Hsu et al. (2004), is analogous to using
placebos as negative controls in clinical trials.

In clinical trials, positive controls are treatments known to be different
from negative controls. They are sometimes used in safety trials to validate
assay sensitivity. Spiking RNA samples is perhaps analogous to using positive
controls in clinical trials.

Active controls in clinical trials are treatments known to be efficacious.
Non-inferiority of a treatment is typically defined as a fraction of the improve-
ment given by an active control over the placebo. Thus, by analogy, we believe
the determination of a δ value may be done by observing differential expres-
sions of genes that are known to be involved in the biological process. For
example, in comparing normal human tissue and a certain type of cancer tis-
sue, the p53 gene may serve as an active control if it is known to be involved
in the development of this type of cancer.

The δ chosen should be smaller than the smallest log expression difference
of the active control gene among the tissues. The value of δ may be determined
based on previous experience, the purpose of the current analysis, and future
use of the results. The larger the δ is, the more maintenance genes we can
select for normalization.
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The H0 in (5) can be partitioned into two one-sided hypotheses

H0 : θsk
ij ≤ −δ vs. Ha : θsk

ij > −δ (6)

and
H0 : θsk

ij ≥ δ vs. Ha : θsk
ij < δ. (7)

Since θsk
ij ≤ −δ and θsk

ij ≥ δ cannot be true at the same time, we can make
at most one mistake of incorrectly rejecting a true null hypothesis. Therefore,
we can test (6) and (7) at level-α and reject H0 in (5) if both H0 in (6) and
H0 in (7) are rejected. This is a level-α test for H0 in (5).

The least square estimator (LSE) for θsk
ij is

θ̂sk
ij = (ȳis. − ȳjs.) − (ȳik. − ȳjk.)

where ȳis., ȳjs., ȳik. and ȳjk. are similarly defined as in (4). If we assume

εijr
iid∼ N(0, σ2), then Yijr

iid∼ N(τij, σ2). This is a special case of εijr
iid∼ Fj

(or εijr
iid∼ Gi), where all the Fj’s (or Gi’s) are normal distributions with zero

mean and equal variance. Under this assumption, the variance of θ̂sk
ij is

V ar(θ̂sk
ij ) = σ2(

1

nis

+
1

njs

+
1

nik

+
1

njk

).

Then the standard error of θ̂sk
ij is

SE(θ̂sk
ij ) =

√
σ̂2(

1

nis

+
1

njs

+
1

nik

+
1

njk

),

where σ̂2 is the mean square error (MSE). Since (θ̂sk
ij − θsk

ij )/SE(θ̂sk
ij ) has a

Student’s t distribution with degrees of freedom ν =
∑I

i=1

∑J
j=1 nij − IJ , a

level-α test for (6) will reject H0 : θsk
ij ≤ −δ if

θ̂sk
ij + δ

SE(θ̂sk
ij )

> tα,ν ,
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and a level-α test for (7) will reject H0 : θsk
ij ≥ δ if

θ̂sk
ij − δ

SE(θ̂sk
ij )

< −tα,ν .

Therefore, a level-α test for (5) will reject H0 : |θsk
ij | ≥ δ and infer |θsk

ij | < δ if
T sk

ij > tα,ν , where

T sk
ij = min{ δ + θ̂sk

ij

SE(θ̂sk
ij )

,
δ − θ̂sk

ij

SE(θ̂sk
ij )

}.

For I genes and J tissues, there are N =
(

I
2

)(
J
2

)
θsk

ij ’s. That is, there are N
individual hypotheses to test. For multiplicity adjustment, a stepwise method
can be used to achieve higher power. For example, Holm’s step-down method
(Holm, 1979) that is based on the Bonferroni inequality puts no restriction
on the correlation structure of the test statistics. So it is suitable to test
H0 : |θsk

ij | ≥ δ, i < j, s < k, because the correlation structure of the test
statistics T sk

ij , i < j, s < k, is complicated.
Let T(j) be the jth largest T sk

ij among the N T sk
ij ’s. Holm’s step-down

procedure goes as follows.
Step 1: If T(N) > t α

N
,ν , infer the corresponding |θsk

ij | < δ and go to step 2;
else stop.

Step 2: If T(N−1) > t α
N−1

,ν , infer the corresponding |θsk
ij | < δ and go to

step 3; else stop.
· · ·

Step N : If T(1) > tα,ν , infer the corresponding |θsk
ij | < δ, and stop.

If the assumption εijr
iid∼ N(0, σ2) is not satisfied, for example, if residual

plots indicate unequal variance or departure from normality, then we may
assume εijr ∼ Fj (or εijr ∼ Gi) only and use a bootstrap method (Efron
and Tibshirani, 1993) to obtain simultaneous confidence intervals for θsk

ij , i <
j, s < k.

Suppose εijr ∼ Fj with M possibly distinct Fj’s, denoted by Fm,m =
1, 2, . . . , M . If the Fj’s are identical, then M = 1. If the Fj’s are all different
from each other, then M = J , the total number of tissues or cells. If some
but not all of the Fj’s are identical, then M is between 1 and J . The fol-
lowing bootstrap procedure adjusts multiplicity while taking advantage of the
dependence between the genes.

1. Fit model (1) and obtain LSE τ̂ij = ȳij. for each τij.

7Huang et al.: Selecting Maintenance Genes for Normalization
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2. Compute residuals eijr = yijr − τ̂ij and group them into e1,e2, . . . ,eM

where em = {eijr’s with Fj identical to Fm}, m = 1, 2, . . . , M .

3. Let nm be the number of residuals in em, m = 1, 2, . . . , M . Draw a
random sample of size n1 from e1 with replacement. Similarly, draw
random samples of size n2, . . . , nM from e2, . . . ,eM , respectively. The re-
sampled residuals are called bootstrap residuals and denoted by e∗ijr, i =
1, . . . , I, j = 1, . . . , J, r = 1, . . . , nij.

4. Compute bootstrap estimate for ξsk
ij = θ̂sk

ij − θsk
ij : (ξsk

ij )∗ = (ē∗is. − ē∗js.) −
(ē∗ik. − ē∗jk.).

Repeat steps 3-4 B times (we use B = 100, 000 in Section 4) to obtain B
bootstrap estimates for ξsk

ij : {(ξsk
ij )∗1, (ξ

sk
ij )∗2, . . . , (ξ

sk
ij )∗B}. For each set of (ξsk

ij )∗,
record the smallest value min(ξsk

ij )∗ and the maximum value max(ξsk
ij )∗.

Let dL be the 100α
2
th empirical percentile of the B min(ξsk

ij )∗ values. Let
dU be the 100(1 − α

2
)th empirical percentile of the B max(ξsk

ij )∗ values. Since

1 − P{θ̂sk
ij − dU < θsk

ij < θ̂sk
ij − dL for i < j, s < k}

= 1 − P{dL < θ̂sk
ij − θsk

ij < dU for i < j, s < k}
= 1 − P{min{θ̂sk

ij − θsk
ij } > dL and max{θ̂sk

ij − θsk
ij } < dU}

= P{min{θ̂sk
ij − θsk

ij } < dL or max{θ̂sk
ij − θsk

ij } > dU}
≤ P{min{θ̂sk

ij − θsk
ij } < dL} + P{max{θ̂sk

ij − θsk
ij } > dU}

� α/2 + α/2

= α,

a (1 − α)100% simultaneous confidence interval for θsk
ij is (Lsk

ij , U sk
ij ) = (θ̂sk

ij −
dU , θ̂sk

ij − dL). If (Lsk
ij , U sk

ij ) is contained in the interval (−δ, δ), then |θsk
ij | ≤ δ

is inferred. That is, the expression levels of genes i and j are considered to
have small interaction in tissues s and k.

4 Example of Data Analysis

We will apply our statistical method to the maintenance gene expression data
from Vandesompele et al. (2002). Vandesompele et al. obtained expression
profiles of ten commonly used maintenance genes in 13 human tissues using
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Table 1. Maintenance Genes in the Study by Vandesompele et al. (2002)
Symbol Name Function
ACTB Beta actin Structural constituent of Cy-

toskeleton
B2M Beta-2-microglobulin MHC class I receptor activity
GAPDH Glyceraldehyde-3-phosphate

dehydrogenase
Oxidoreductase in glycolysis

HMBS Hydroxymethyl-bilane syn-
thase

Hydroxymethyl-bilane syn-
thase activity

HPRT1 Hypoxanthine
phosphoribosyl-transferase 1

Magnesium ion binding trans-
ferase activity

RPL13A Ribosomal protein L13a Structural constituent of ribo-
some

SDHA Succinate dehydrogenase
complex, subunit A

Electron transporter activity,
oxidoreductase activity

TBP TATA box binding protein General RNA polymerase 2
transcription factor activity

UBC Ubiquitin C Protein degradation
YWHAZ Tyrosine 3-monooxygenase/

trytophan 5-monooxygenase
activation protein, zeta
polypeptide

monooxygenase activity, pro-
tein domain specific binding

real-time RT-PCR that provides more precise quantification than microarray.
They proposed an ad hoc procedure to select maintenance genes based on
their gene-stability measure which is similar to our measure of interaction but
without statistical justification. The ten maintenance genes are ACTB, B2M,
GAPDH, HMBS, HPRT1, RPL13A, SDHA, TBP, UBC and YWHAZ (see
Table 1 for full names and functions). We denote them by gene 1, gene 2,
..., and gene 10, respectively. There were replicated samples for four of the
13 tissues, so we will use maintenance gene expression data from these four
tissues only (bone-marrow, fibroblast, leukocyte and neuroblastoma, denoted
by tissue 1, tissue 2, tissue 3 and tissue 4). Therefore, I = 10, J = 4, and the
number of parameters N = 270.

To decide which testing procedure, t-test or bootstrap procedure, is ap-
propriate for the maintenance gene expression data from Vandesompele et al.,
diagnostic plots are obtained (see Figures 2 and 3). The residual plots in Fig-
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Figure 2: Residual plots for maintenance gene expression data. (a) Plot of
standardized residuals against genes. (b) Plot of standardized residuals against
tissues, indicating unequal variances among tissues.

ure 2 show unequal variances among tissues, so the assumption εijr
iid∼ N(0, σ2)

is not satisfied. But the distribution of log expression levels in tissue 1 has
a similar shape as in tissue 4 and the distribution of log expression levels in
tissue 2 has a similar shape as in tissue 3 (see Figure 3). So the data seem
to satisfy the assumption εijr ∼ Fj, j = 1, 2, . . . , 4, with F1 = F4 = F 1 and
F2 = F3 = F 2. To further assess this issue, QQ-plot of residuals from tissue 4
against residuals from tissue 1 and QQ-plot of residuals from tissue 3 against
residuals from tissue 2 are obtained in Figure 4. The QQ-plot in Figure 4(a)
follows an approximate straight line along the 45-degree diagonal, indicating
F1 = F4. The QQ-plot in Figure 4(b) does not look like a straight line along
the 45-degree diagonal, so we cannot assume F2 = F3. Therefore, we will use
the bootstrap procedure described in Section 3 with three distinct distributions
(F1 = F4, F2, and F3) to obtain simultaneous confidence intervals.

For the maintenance gene expression data from Vandesompele et al., we
take α = 0.05. If the confidence interval of θsk

ij is within (−δ, δ), then θsk
ij

has small absolute value. Based on the θsk
ij ’s that are identified to have small

absolute values, we can select the corresponding maintenance genes. It is
possible to have multiple sets of maintenance genes selected and these sets
have the same size. For example, when δ = 6, the sets of genes selected
are genes {1,3,4}, genes {6,7,10}, genes {6,9,10} and genes {7,8,10}. We can
select any one of them for normalization. We can also select a smaller set,
for example, genes {1,3} instead of genes {1,3,4}, for normalization. However,
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Table 2. Number of Maintenance Genes Selected in the Largest Set
δ Value < 5 5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9
No. Genes 0 0 0 0 2 3 3 3 3 3 3
δ Value 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0
No. Genes 3 3 3 4 4 4 4 4 4 4 4

we recommend selecting as many maintenance genes as possible. Generally,
the larger the δ is, the more maintenance genes may be selected. To see
how the value of δ would influence the results, we summarize the number of
maintenance genes selected in the largest set and its corresponding δ value in
Table 2 and Figure 5. For example, when δ = 5.3, we can select as many as
two maintenance genes. When 5.4 ≤ δ ≤ 6.2, we can select as many as three
maintenance genes. Figure 5 could assist in the decision about the δ value.
For instance, with only a 0.1 increase in δ (from 5.3 to 5.4), the number of
maintenance genes selected increases from two to three. To select one more
maintenance genes so that there are four maintenance genes for normalization,
we have to increase the δ value from 5.4 to 6.3.

The information from positive control genes may serve as an upper bound
of the δ values. There were no positive control genes included in the real-time
RT-PCR by Vandesompele et al., so we arbitrarily assume that the upper
bound is 6. That is, the δ value should be less than 6. For all the δ values less
than 6, we would choose δ = 5.4 because it is the smallest value that gives as
many maintenance genes as possible.

After determining the δ value to be 5.4, we can collate the results using
the table and the diagram in Figure 6. In the table and the diagram in Figure
6, the numbers 1 through 10 represent gene 1 through gene 10. In the table in
Figure 6(a), a symbol X means that the corresponding H0 : |θsk

ij | ≥ δ cannot
be rejected for all pairs of s and k. For example, there is no X in the sixth cell
of the ninth row, which means that gene 6 and gene 9 have small interactions
across all pairs of tissues. This is displayed in the diagram in Figure 6(b) with
a line connecting gene 6 and gene 9. Similarly, genes 6 and 10, and genes 9 and
10 have small interactions across all pairs of tissues. Based on the diagram in
Figure 6(b), maintenance genes {6,9,10} can be selected for normalization of
the data from the four tissues.

11Huang et al.: Selecting Maintenance Genes for Normalization
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5 Conclusion

We have defined a set of maintenance genes for which all 2 x 2 gene by tis-
sue/cell interactions are within (−δ, δ) to be good candidates for expression
level normalization. With this definition, the key to proper statistical inference
is to formulate the problem as one of practical equivalence instead of signifi-
cant difference. Provided that replicated sample measurements on candidate
maintenance genes exist, the proposed statistical method can be used to select
a suitable set for normalization purpose.
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Figure 3: Side by side boxplots of log expression levels for each tissue.
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Figure 4: QQ-plots of residuals. (a) QQ-plot of residuals from tissue 4 against
residuals from tissue 1. An approximately linear pattern along the 45-degree
line indicates F1 = F4. (b) QQ-plot of residuals from tissue 3 against residuals
from tissue 2. It does not look like a straight line along the 45-degree diagonal,
so we cannot assume F2 = F3.
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Figure 5: Plot of the number of maintenance genes selected in the largest
set versus its corresponding δ value. When δ = 5.3, we can select as many
as two maintenance genes. When 5.4 ≤ δ ≤ 6.2, we can select as many as
three maintenance genes. When 6.3 ≤ δ ≤ 7, we can select as many as four
maintenance genes.
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(a) All Tissues with Delta = 5.4 

1 2 3 4 5 6 7 8 9 10

10
9

8
7

6
5

4
3

2
1

XXXXXX

XX

XXXX

XXXXX

XXXXX

XXXXXX

XXXXX

XXX

XXXX

XXXXX

XXXXX

XXXXX

XXXXX

XXXXXX

XXXXX

XXXXXX

XXXXX

XXX

XXX

XXXX

XXXXX

XXXXX

XXXX

XXX

XX

XXXXX

XXXXX

XXXX

XXXXX

XXXXX

XXXX

XXXXX

XXXXX

XXXX

XXX

XXXX

XXXXX XXXX

XXXX

XXXX

XXXX

XXXX

XXXXXX XX XXXX XXXXX XXXXX XXXXXX XXXXX XXX XXXX

XXXXX XXXXX XXXXX XXXXX XXXXXX XXXXX XXXXXX XXXXX

XXX XXX XXXX XXXXX XXXXX XXXX XXX

XX XXXXX XXXXX XXXX XXXXX XXXXX

XXXX XXXXX XXXXX XXXX XXX

XXXX XXXXX

XXXX XXXX XXXX

XXXX XXXX

(b)

1
2

3

4
56

7

8

9
10

Figure 6: Selection of maintenance genes for tissues 1, 2, 3 and 4 with δ = 6.4.
The numbers 1 through 10 represent gene 1 through gene 10. (a) Genes 6 and
9, genes 6 and 10, and genes 9 and 10 have small interactions across all pairs
of tissues. (b) Genes {6,9,10} can be selected for normalization.
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