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Abstract

Quantitative Polymerase Chain Reaction (Q-PCR) aims at determining the initial quantity of
specific nucleic acids from the observation of the number of amplified DNA molecules. The most
widely used technology to monitor the number of DNA molecules as they replicate is based on
fluorescence chemistry. Considering this measurement technique, the observation of DNA ampli-
fication by PCR contains intrinsically two kinds of variability. On the one hand, the number of
replicated DNA molecules is random, and on the other hand, the measurement of the fluorescence
emitted by the DNA molecules is collected with some random error. Relying on a stochastic model
of these two types of variability, we aim at providing estimators of the parameters arising in the
proposed model, and, more specifically, of the initial amount of molecules. The theory of branch-
ing processes is classically used to model the evolution of the number of DNA molecules at each
replication cycle. The model is a binary splitting Galton-Watson branching process. Its unknown
parameters are the initial number of DNA molecules and the reaction efficiency of PCR, which
is defined as the probability of replication of a DNA molecule. The number of DNA molecules
is indirectly observed through noisy fluorescence measurements resulting in a so-called Hidden
Markov Model. We aim at inference of the parameters of the underlying branching process, and
the parameters of the noise from the fluorescence measurements in a Bayesian framework. Us-
ing simulations and experimental data, we investigate the performance of the Bayesian estimators
obtained by Markov Chain Monte Carlo methods.

KEYWORDS: Bayesian estimation, branching process, Hidden Markov Model, Markov Chain
Monte Carlo
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Erratum

The author wishes to indicate that in Figure 1, describing the Hidden Markov Model used for
the statistical analysis, there should be no arrow linking consecutive random variables Fk’s.



1 Introduction

Polymerase Chain Reaction (PCR, Mullis and Faloona, 1987) is an in vitro enzy-
matic reaction capable of rapidly amplifying the number of copies of a specific
target DNA fragment. In molecular biology, this popular technique is especially
used when the starting number of the DNA molecules is small so that the quan-
tity of DNA template molecules has to be amplified in order to be detectable, and
even measurable. Quantitative PCR (Q-PCR) is extremely widespread since deter-
mining the starting number of specific DNA fragments in a biological sample has
numerous applications ranging from virus load quantification (Cortez et al., 2003)
to genetically modified organism studies (Ahmed, 2002). Kubista et al. (2006) have
reviewed PCR applications and methods, and a comprehensive account of Q-PCR
is given in Bustin (2004).

PCR consists of the succession of a few dozens of replication cycles that enable
one to exponentially amplify the initial number of the nucleic acids of interest (Saiki
et al., 1988). The DNA amplification by PCR is intrinsically random. At each repli-
cation cycle, a DNA molecule is successfully duplicated with a certain probability
called the reaction efficiency. In practical PCR experiments, the reaction efficiency,
which we will denote byp, is an unknown quantity satisfying 0< p < 1. Let X0

be the initial number of DNA molecules and, for allk≥ 1, letXk be the number of
DNA molecules at replication cyclek. The extreme (theoretical) casep = 0 means
that the DNA molecules never duplicate, that isXk = X0, for all k; the other ex-
treme (theoretical) casep = 1 means that all molecules always duplicate, that is
Xk = 2kX0.

We will consider the exponential phase (see below) of PCR for which the reac-
tion efficiency may be assumed constant (Freeman et al., 1999). In this framework,
we will model the random variablesXk by a Galton-Watson branching process in-
troduced in the PCR setting by Krawczak et al. (1989). Branching processes, which
are Markovian processes, allow one to stochastically model the evolution in time of
the size of a population (Haccou et al., 2005), and are widely used for biological
applications (Kimmel and Axelrod, 2002).

We aim at determining the initial amountX0 of DNA molecules undergoing
PCR. We will consider data arising from the most commonly used PCR experimen-
tal setting to monitor DNA amplification, which is based on fluorescence chem-
istry (Crockett and Wittwer, 2001, Wilhelm and Pingoud, 2003). This technique
consists of measuring at each replication cycle the amount of fluorescence emit-
ted by the DNA molecules as PCR proceeds. The continuous monitoring of the
accumulation of DNA molecules undergoing PCR is also referred to as kinetic or
real-time PCR. At the beginning of the reaction, the fluorescence intensity is indis-
tinguishable from the background noise of the measuring device. PCR enters first
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its exponential phase which is followed by a linear phase during which the reac-
tion efficiency is decreasing (Liu and Saint, 2002), and ultimately PCR undergoes
a plateau phase (Walker, 2001). The classical quantification methodology based on
fluorescence data relies on amplifying several dilutions of a standard with known
initial concentrations in order to construct a standard curve (Rutledge and Côté,
2003). At the exponential phase, one sets an arbitrary threshold fluorescence level
which is significantly above the background noise level of the fluorescence mea-
suring apparatus (Ginzinger, 2002). For each dilution of the standard, the threshold
cycle at which the amplification curve reaches the fixed threshold fluorescence level
is recorded. Note that, typically, the threshold cycle is not an integer and is rather
called a fractional threshold cycle. The quantification method assumes a linear rela-
tionship between the logarithm of the initial number of standard molecules and the
threshold cycle. It also assumes that the standard dilutions and the specific DNA
segment of interest have identical reaction efficiencies (Livak, 1997). The standard
curve is a calibration curve: comparing the fluorescence level from the PCR ampli-
fication of the fragment DNA of interest at its threshold replication cycle with the
standard curve, the initial amount of the DNA molecules of interest is determined.

It is quite expensive to obtain the standard curve since it requires many PCR
runs of a designed standard. Therefore, various quantification methods have been
proposed that are based on a single reaction set-up. Ignoring measurement errors,
Peccoud and Jacob (1998) have used a conditional least squares estimator relying
on the exponential phase to infer the reaction efficiency. Schlereth et al. (1998) have
modelled an individual amplification curve, that is the amounts of DNA molecules
as a function of the number of replication cycles, by a Gompertz function, and have
estimated its parameters. Gentle et al. (2001) have estimated the reaction efficiency
by linear regression of the logarithm of the measured fluorescence versus the repli-
cation cycle using data from the exponential phase. Ramakers et al. (2003) have
used the same inference technique as Gentle et al. (2001) which they have combined
with an algorithm to determine the exponential phase. Tichopad et al. (2003a, b)
have also elaborated algorithms to identify the exponential part of an amplification
curve. Zhao and Fernald (2005) have developed an algorithm to identify the expo-
nential phase by fitting a logistic model to the amplification curve. Their algorithm
fits then an exponent model to the identified exponential phase allowing to infer
the reaction efficiency. Assuming that the number of DNA molecules is directly
and exactly observed at each replication cycle of the exponential phase, Lalam and
Jacob (2005) have performed a simulation analysis to infer the initial number of
molecules and the reaction efficiency in a Bayesian setting. Analyzing experimen-
tal PCR fluorescence data from the exponential phase and the subsequent linear and
early plateau phase, Goll et al. (2006) have fitted the DNA amplification curve to
a class of sigmoid functions and they have estimated the initial DNA concentration

2

Statistical Applications in Genetics and Molecular Biology, Vol. 6 [2007], Iss. 1, Art. 10

http://www.bepress.com/sagmb/vol6/iss1/art10



by extending the interpolated sigmoid to the origin.
We aim at developing an inference methodology based on a single PCR run.

The proposed method relies on a stochastic model of the DNA accumulation by
PCR and on a stochastic model of the fluorescence measurements. We will use a
Galton-Watson branching process to model the PCR amplification process which is
observed with errors. The combination of the model of the amplification variability
and the measurement error variability results in a Hidden Markov Model (HMM)
described in section 2. The main contribution of this work is to investigate Q-PCR
using a HMM which is proposed here to account for the two kinds of randomness
involved in PCR measurements. We will estimate the unknown parameters of this
HMM in a Bayesian framework defined in section 3. The main parameter of interest
is the initial copy number of the DNA molecules. The performance of the estima-
tors will be assessed through simulations presented in section 4 using a Markov
Chain Monte Carlo approach. Experimental data will also be analyzed.

2 Hidden Markov Model

The accumulation of DNA molecules replicated by PCR may be stochastically mod-
elled by a dynamic population model. We will consider the exponential phase of
PCR during which we make the classical assumption that the reaction efficiency
is constant (Freeman et al., 1999). As indicated by Krawczak et al. (1989) and
further developed by Sun (1995) and Weiss and von Haeseler (1995), the PCR am-
plification process may then be modelled by a Galton-Watson branching process.
Let Xk be the random variable equal to the number of DNA molecules present at
replication cyclek, for k≥ 1, and letX0 be the initial number of molecules (before
the molecules undergo PCR). Denote byYk,i the number of descendant molecules
from moleculei from cyclek. If moleculei replicates correctly, thenYk,i = 2 with
probability p, otherwiseYk,i = 1 with probability 1− p. We will assume that the
offspringYk,i are all independent and identically distributed (i.i.d.). The number of
DNA molecules present at cyclek+1 satisfies then{

Xk+1 =
∑Xk

i=1Yk,i ,
P(Yk,i = 2) = p = 1−P(Yk,i = 1).

(1)

The process{Xk} defined by (1) is a binary splitting Galton-Watson branching pro-
cess. More precisely, this branching process is supercritical because the offspring
meanm= 1+ p is strictly greater than one as we will considerp> 0. Using the fact
thatYk,i −1 is a Bernoulli random variable with parameterp and the fact that the
sum ofN independent Bernoulli random variables follows a Binomial distribution
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with parametersN andp, relationship (1) leads to

Xk+1 = Xk +Binomial(Xk, p)(2)

as used by Stolovitzky and Cecchi (1996).
We will consider PCR experiments for which observation of the dynamics is

performed through fluorescence chemistry since this is the mainstream PCR mea-
surement technique (Wilhelm and Pingoud, 2003, Kubista et al., 2006). With this
technique, the Markovian process{Xk} is not observed directly: at each replica-
tion cyclek, the fluorescenceFk emitted by theXk molecules present, is measured.
We will make the classical assumption that the fluorescence emitted by the DNA
molecules is proportional to the amount of the molecules (Livak, 1997). In addi-
tion, we will account for the fact that the fluorescence data are obtained with errors
which are assumed additive. These considerations result in the following Hidden
Markov Model (HMM), for allk≥ 1,{

Xk = Xk−1 +Binomial(Xk−1, p),
Fk = αXk + εk.

(3)

Each fluorescence intensity measurement is performed at the end of each replica-
tion cycle which explains that (3) is assumed to hold starting from cyclek = 1.
The random variablesXk and the measurement errorsεk are assumed independent,
and theεk are assumed i.i.d. according to a Gaussian distribution with mean zero
and varianceσ2. The underlying Markovian process{Xk} is referred to as the
regime in the HMM terminology. The study of model (3) for analyzing PCR data
was suggested, but not investigated, by Peccoud and Jacob (1998). The assump-
tion of the noise having mean zero is consistent with the use of data corrected for
background fluorescence. For instance, the ABI PRISMTM 7700 sequence detec-
tion system (Applied Biosystems, Foster City, CA, USA) may provide fluorescence
data with such corrections relying on measurements of so-called No Template Con-
trols consisting of reaction tubes (or amplification wells) containing no target DNA
to amplify (Mackay et al., 2002). Alternatively, one may assume that the additive
noise has an unknown meanµ to infer. For simplicity, we will considerµ = 0 in
this study.

In view of the second relationship of (3) and since{Xk} is not observed, we
will assume that the proportionality constantα between the emitted fluorescence
intensity and the number of present molecules is known so that the model is iden-
tifiable. In practice, this assumption would mean that auxiliary PCR runs should
be performed in order to determine the scale factor between the fluorescence inten-
sity and the DNA copy number. Peirson et al. (2003) and Goll et al. (2006) have
proposed estimated values forα determined with real amplification curves.
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Figure 1: Graphical representation of the model used for inference. An arrow shows direct dependence between two
random variables (note thatα is a known constant). The nodes in grey are observed.
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The unknown parameters of the model defined by (3) are the initial amountX0

of DNA molecules, the reaction efficiencyp, and the varianceσ2 of the noiseεk.
The main parameter of interest for Q-PCR isX0. Figure 1 represents graphically
the model of interest.

We explain in the next section the estimation method we propose to infer the
true value of the parameterθ = (X0, p,σ2) from observing successive fluorescence
data( f1, . . . , fn) belonging to the exponential phase of a single PCR set-up.

3 Inference

Several methods are available to infer parameters from a HMM (Bickel et al., 1998,
Ephraim and Merhav, 2002, Cappé et al., 2005, Mitrophanov et al., 2005). We
will use here a Bayesian inference approach, that is we will treat all unknowns as
random variables and we will assign a set of prior distributions to the unknown pa-
rameters of the model. Also, a key advantage of the Bayesian analysis is that it is
adapted to deal with missing data. This is particularly interesting when dealing with
PCR experiments because, for an amplification curve, the number of molecules is
not directly accessible, but this missing information is replaced by the measurement
of the fluorescence emitted by the DNA templates. Scott (2002) has reviewed the
use of the Bayesian paradigm and Markov Chain Monte Carlo methods to analyze
HMM’s. Bayesian inference for Galton-Watson branching processes that have been
observed directly, has been addressed by many authors. Yanev and Tsokos (1999)
and Farrington et al. (2003) have investigated Bayesian estimation for the offspring
mean of a Galton-Watson branching process for which the offspring distribution
belongs to a power series family. Mendoza and Gutiérrez-Pẽna (2000) have con-
sidered a Galton-Watson branching process with offspring modelled as a random
variableY taking a finite numberJ of values,P(Y = j) = π j , j = 0, . . . ,J. This
corresponds to the PCR setting withJ = 2, π0 = 0, π1 = 1− p, andπ2 = p. They
have chosen Dirichlet priors on theπ j and have deduced a Bayesian estimator of
the mean of the offspring distribution.

3.1 Prior distribution of θ

Within the HMM defined by (3), we assume thatθ = (X0, p,σ2) is a random vari-
able with independent components. The prior distributions that we choose for each
component ofθ , are given in the following sections.
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3.1.1 Prior distribution of X0

We consider a uniform prior distribution on a log scale forX0. This moderately
informative prior is defined such that log(X0) is uniformly distributed over a finite
interval such that the range of possible values ofX0 is {Mlow, . . . ,Mup}. This results
in

P(X0 = `) =
c
`
, for all Mlow ≤ ` ≤ Mup with c =

1∑Mup
`=Mlow

1
`

for some fixed integersMlow and Mup. The values ofMlow and Mup should be
selected by the experimenter based on some a priori knowledge about the biological
sample which may take the form of a preliminary approximation of the order of
magnitude ofX0.

3.1.2 Prior distribution of p

We consider forp a Beta prior distribution Beta(a,b) with density

Γ(a+b)
Γ(a)Γ(b)

pa−1(1− p)b−11(0,1)(p)

with Γ(x) =
∫ ∞

0 tx−1exp(−t)dt, anda andb taken constant.
If a = b = 0.5, then the prior forp is the (non-informative) Jeffreys prior for the
parameter of a Bernoulli distribution. The Jeffreys prior is invariant under one-to-
one reparameterization (Jeffreys, 1946). Ifa = b = 1, then the prior forp reduces
to the uniform prior. If the experimenter has some prior knowledge thatp < 0.5 or
p > 0.5, then he/she should select the values ofa andb accordingly. For example,
if one assumes that the reaction efficiency is within the range [0.7, 0.9] as is often
the case in PCR experiments, then one may choosea = 9 andb = 3 such that the
corresponding Beta prior gives a quite high probability for the interval [0.7, 0.9].
More generally, one may also considera andb as hyper-parameters and put some
priors on these quantities considered as random variables but we will not adopt this
approach here.

3.1.3 Prior distribution of σ2

The (non-informative) prior suggested by Jeffreys (1946) for a scale parameter is
π(σ2) = 1/σ2, which is improper. We will rather consider a proper prior for the
variance. We use a truncated Gaussian distributionN(µ0,σ

2
0) as a prior forσ2,

whereµ0 andσ2
0 are known. For the prior to be informative, the meanµ0 should be

taken close to an initial approximation ofσ2, and the varianceσ2
0 should be chosen
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small. The truncation allows us to restrict the possible values forσ2 to a specific
range based on some knowledge on the order of magnitude of the variance of the
fluorescence measuring device.
One may also assign a Gamma prior to the inverse ofσ2.

3.2 Posterior distribution of θ

The posterior distribution ofθ combines the prior information onθ and the likeli-
hood function of the data( f1, . . . , fn), which are realizations of(F1, . . . ,Fn), given
(3) with θ fixed. Denote byπ(θ | f1, . . . , fn) the posterior distribution ofθ , de-
note byπ(θ) the prior distribution ofθ described in sections 3.1.1-3.1.3, and let
π( f1, . . . , fn|θ) be the likelihood function of the data satisfying the HMM condi-
tionally to θ . In view of the Bayes rule, the posterior distribution satisfies

π(θ | f1, . . . , fn) =
π(θ)π( f1, . . . , fn|θ)∫

π(θ ′)π( f1, . . . , fn|θ ′)dθ ′ ,(4)

with, according to (3) and denotingX1,X2, . . . ,Xn by X1:n,

π( f1, . . . , fn|θ) =
∑
X1:n

P( f1, . . . , fn|X1:n,θ)P(X1:n|θ)

=
∑
X1:n

P( f1|X1,θ)
n−1∏
t=1

[P( ft+1|Xt+1,θ)]P(X1|θ)
n−1∏
t=1

P(Xt+1|Xt ,θ)

=
∑
X1:n

1

(2πσ2)
n
2

exp

{
− 1

2σ2

n∑
t=1

( ft −αXt)
2

}

.
n−1∏
t=0

[CXt+1−Xt
Xt

(1− p)Xt ][
p

1− p
]Xn−X0.

Because it is difficult here to treat analytically the posterior distribution (4), we will
use a Markov Chain Monte Carlo (MCMC) approach. MCMC methods consist
of generating a Markov chain whose unique stationary distribution is the posterior
distribution of the parameter of interest. Under some regularity conditions (Tier-
ney, 1994), the realizations of this Markov chain, after some burn-in time, may be
viewed as realizations of sampling from the desired posterior distribution of the pa-
rameter. The burn-in period aims at removing dependence of the simulated chain
from its starting point.

To illustrate the proposed estimation methodology for Q-PCR based on an indi-
vidual reaction set-up, we perform simulations and use real-time PCR data.
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Figure 2: Amplification curve. On the x-axis, the replication cycles; on the y-axis, the simulated fluorescence measure-
ments.
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4 Results

4.1 Simulated data

Using the software Mathematica (Wolfram Research, Inc.), we have simulated an
amplification curve such that (3) holds with the true values of the parameters being
X0 = 30, p = 0.8, α = 0.05, andσ2 = 100. The number of replication cycles was
n = 15. The plot of the obtained amplification curvefk versusk, for 1≤ k≤ 15, is
contained in Figure 2.

We illustrate how our method described in section 3 may be implemented in
practice with the software WinBUGS (Lunn et al., 2000, Spiegelhalter et al., 2003).
This software, publicly available at http://www.mrc-bsu.cam.ac.uk/bugs, allows to
generate MCMC samples from the posterior distribution based on the Gibbs sam-
pler. The Gibbs sampling algorithm (Geman and Geman, 1984, Gelfand and Smith,
1990) relies on the full conditionals of the distribution of interest. It consists of
drawing sequentially a realization of a variable according to the distribution of this
variable conditionally to all the other variables held fixed. Furthermore, the soft-
ware is flexible so that the sampling scheme may be adapted in view of the com-
plexity of the model (Lunn et al., 2000).

The specific values for the prior distributions from sections 3.1.1-3.1.3 that we
have chosen are:

• logX0 uniformly distributed withX0 ranging over{Mlow, . . . ,Mup}with Mlow =
1 andMup = 100;

• p distributed according to a Beta(0.5,0.5) distribution;

• σ2 normally distributed with mean 100 and variance 10000. The Gaussian
distribution was truncated over the interval [0,500].

The length of the simulated Markov chain was 11000 iterations, the first 1000
iterations from the burn-in period were discarded from the analysis. The conver-
gence of the Markov chain was assessed by visual inspection of the trace plots.

Table 1 and Figure 3 summarize the marginal posterior distributions of the pa-
rameter for the simulated amplification curve. Table 1 reports marginal posterior
means, standard deviations, medians, and 95% credibility intervals for the param-
eters of interest. The terms from the MC error column indicate the computational
accuracy of the values computed via the WinBUGS software. This means that the
reported values are computationally accurate to about + or - the value of the MC
error. Marginal unnormalized (kernel) densities are drawn in Figure 3.
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Parameter Mean Standard deviation MC error 2.5% Median 97.5%

X0 31.04 1.946 0.03203 27 31 35
p 0.7992 0.002407 1.006 10−4 0.7944 0.7992 0.8039

σ2 147.6 49.16 0.7168 72.64 140.6 264

Table 1: Summary of the marginal posterior distributions.

Figure 3: Marginal kernel density functions ofX0, p, andσ2.
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The estimates ofσ2, p, and especiallyX0 are quite precise. The assumption that
α is known illustrates the fact that a single PCR amplification curve is not enough
to provide precise information onθ and that one needs some preliminary informa-
tion onα to get a calibration on the fluorescence measurement.

A sensitivity analysis is carried out in order to investigate the possible depen-
dence of the chosen priors on the results. The different cases for the choices of the
priors are the following:
-case I: uniform prior on the log scale over{1, . . . ,500} for X0, Beta(0.5,0.5) prior
for p, Gaussian prior N(100,10000) truncated over [0,500] forσ2;
-case II: Poisson prior with mean 10 forX0, same priors for p andσ2 as in case I;
-case III: Poisson prior with mean 50 forX0, same priors for p andσ2 as in case I;
-case IV: uniform prior on the log scale over{1, . . . ,100} for X0, Beta(9,3) prior for
p, same prior forσ2 as in case I;
-case V: same priors forX0 andσ2 as in case IV, uniform prior over (0,1) forp;
-case VI: same prior forX0 as in case IV, Beta(0.5,0.5) prior forp, Gamma prior
with parameters 0.01 and 0.01 for the inverse ofσ2;
-case VII: same prior forX0 andp as in case IV, log normal prior with mean 4.9 and
variance 2 forσ2.
Denote by case VIII the initial choice of the priors specified on page 10.
The marginal posterior means, medians and standard deviations (S.D.), the 95%
credibility intervals, and the MC errors obtained for the different choices of the pri-
ors are given in Table 2.
As expected, it appears that the less informative the priors, the less accurate are the
estimators. In particular, the results obtained in case V, where a uniform prior on
p is used, are very bad and the results from case VI, where a Gamma prior on the
inverse ofσ2 is used, are quite poor. Therefore it is important to make an adequate
choice for the priors.
Consider again the uniform prior on the log scale over{1, . . . ,100} for X0 and the
Beta(0.5,0.5) prior forp. Whenσ2 is fixed to its true value, that is the error related
to the fluorescence measurements is exactly characterized, then the estimates ofX0

and p are even more accurate as reported in Table 3 and Figure 4. The standard
deviations of the posterior distributions ofX0 andp from Table 3 are lower than in
Table 1, and the 95 % credibility intervals are narrower.

The appendix section contains analogous results for four other individual am-
plification curves simulated with the same values of the parameter as the ones used
in the beginning of this section and defined on page 10.
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Case I Case II Case III Case IV Case V Case VI Case VII Case VIII

Mean forX0 31.09 27.9 32.9 31.03 6 24.85 31.09 31.04

S.D. forX0 1.977 1.541 2.045 1.95 0 28.54 1.935 1.946

MC error forX0 0.03601 0.02921 0.03362 0.02746 10−12 2.379 0.03561 0.03203
2.5%quantile forX0 27 25.05 29.08 27 6 1 28 27

Median forX0 31 27.83 32.82 31 6 11 31 31

97.5% quantile for
X0

35 31.14 37.11 35 6 92 35 35

Mean forp 0.7992 0.8007 0.7985 0.7993 0.9999 0.1946 0.7992 0.7992

S.D. for p 2.658 10−3 2.742 10−3 2.547 10−3 2.401 10−3 4.435 10−5 0.1558 2.388 10−3 2.407 10−3

MC error for p 1.214 10−4 1.296 10−4 1.115 10−4 9.36 10−5 6.326 10−7 0.01413 1.086 10−4 1.006 10−4

2.5%quantile forp 0.7938 0.7958 0.7933 0.7945 0.9998 7.007 10−4 0.7943 0.7944

Median forp 0.7992 0.8006 0.7986 0.7993 0.9999 0.1857 0.7992 0.7992

97.5% quantile for
p

0.8046 0.8066 0.8034 0.8041 0.9999 0.5774 0.8039 0.8039

Mean forσ2 188.5 194.8 187.3 146.8 500 1.197 107 148.8 147.6

S.D. forσ2 94.64 105.5 95.07 47.8 0.01143 4.97 106 55.47 49.16

MC error forσ2 1.813 2.671 1.853 0.7772 1.997 10−4 48260 1.395 0.7168

2.5% quantile for
σ2

77.4 77.79 78.18 73.83 500 5.631 106 72.47 72.64

Median forσ2 165.6 167.5 163.7 139.8 500 1.091 107 137.7 140.6

97.5% quantile for
σ2

445.2 475.6 437.4 259.3 500 2.467 107 288.3 264

Table 2: Summary of the marginal posterior distributions for the choices of the priors accounted in cases I to VIII.
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Parameter Mean Standard deviation MC error 2.5% Median 97.5%

X0 31.07 1.937 0.02198 28 31 35
p 0.7992 0.001923 6.421 10−5 0.7955 0.799 0.8029

Table 3: Summary of the marginal posterior distributions whenσ2 is known.

Figure 4: Marginal kernel density functions ofX0 andp.
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4.2 Experimental data

We apply our method to real-time PCR data described in Peirson et al. (2003).
We use the first amplification curve from the dataset analyzed in this paper and ob-
tained with the ABI PRISMTM 7700 sequence detection system (Applied Biosys-
tems, Foster City, CA, USA). This amplification curve is plotted in Figure 5.

For these fluorescence measurements, the scale factor provided by Peirson et al.
(2003) isα = 2.0310−13 fluorescence unit per molecule, and the initial number of
molecules was determined asX0 = 19646.

The parameters for the priors that we assign are:

• Mlow = 19600,Mup = 19700 for the uniform prior on the logarithmic scale
for X0;

• a = 0.5 andb = 0.5 for the Beta prior forp;

• µ0 = 0.1 andσ2
0 = 1 for the Gaussian prior forσ2 truncated on (0,1).

A summary of the results for the marginal posterior distributions is given in Table
4 and Figure 6. The poor results may be explained by an inadequate value for the
scale parameterα, or an inadequate model for the fluorescence measurement errors
assumed Gaussian in (3). Based on the results with these real data, one cannot tell
which inadequacy is to blame. In order to assess the dependence of the results on
the value ofα, several runs of the estimation procedure with the simulated data
described in section 4.1 are conducted: the true value forα is 0.05 and we perform
the MCMC scheme with various wrong values forα and with the priors chosen as
on page 10. The results are summarized in Table 5.

15

Lalam: Statistics for Q-PCR

Published by The Berkeley Electronic Press, 2007



Figure 5: Amplification curve. On the x-axis, the replication cycles; on the y-axis, the experimental fluorescence mea-
surements.
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Mean S.D. MC error 2.5% Median 97.5%

X0 19650 29.41 0.7099 19600 19650 19700
p 3.111 10−2 6.928 10−3 1.225 10−3 2.358 10−2 2.753 10−2 4.469 10−2

σ2 1.349 10−2 3.988 10−3 8.213 10−5 7.85 10−3 1.279 10−2 2.335 10−2

Table 4: Summary of the marginal posterior distributions.

Figure 6: Marginal kernel density functions ofX0, p, andσ2.
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α set to 0.001 0.005 0.01 0.05 0.1 0.5 1 5 50

Mean forX0 19 10.36 19 15.54 31.04 3.182 1.501 1.001 1

S.D. forX0 0 1.528 0 1.352 1.946 0.5623 0.5411 0.03462 0

MC error forX0 10−12 0.1502 10−12 0.01794 0.03203 6.784 10−3 0.01107 6.557 10−4 10−12

2.5% forX0 19 10 19 13 27 2 1 1 1

Median forX0 19 10 19 15 31 3 1 1 1

97.5% forX0 19 15 19 18 35 4 2 1 1

Mean forp 1 0.9907 1 0.7993 0.7992 0.7992 0.7995 0.798 0.7811

S.D. for p 3.5 10−5 0.02896 1.128 10−5 2.638 10−3 2.407 10−3 3.501 10−3 4.157 10−3 8.38 10−3 0.02581

MC error for p 2.999 10−3 2.903 10−3 4.558 10−7 8.093 10−5 1.006 10−4 5.596 10−5 5.493 10−5 9.061 10−5 3.117 10−4

2.5% forp 0.9999 0.8826 1 0.7939 0.7944 0.7923 0.7912 0.7813 0.7286

Median forp 1 0.9998 1 0.7992 0.7992 0.7992 0.7996 0.7981 0.7821

97.5% forp 1 1 1 0.8045 0.8039 0.806 0.8077 0.8142 0.8299

Mean forσ2 500 500 500 173.3 147.6 168.2 137.7 146.8 405.9

S.D. forσ2 3.465 10−3 3.17 10−3 0.01682 74 49.16 74.97 49.18 77.85 63.63

MC error forσ2 6.025 10−5 5.205 10−5 3.003 10−4 1.228 0.7168 1.164 0.7448 1.657 0.9573

2.5% forσ2 500 500 499.9 74.55 72.64 68.84 62.82 49.62 268.9

Median forσ2 500 500 500 157.6 140.6 151.7 130.6 128.4 414.6

97.5% forσ2 500 500 500 369 264 361.4 249.6 355.8 495.6

Table 5: Summary of the marginal posterior distributions for various values forα. The trueα equals 0.05 and the other
true parameter values areX0 = 30, p = 0.8, andσ2 = 100.
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In view of the results from Table 5, the value ofα does have an impact on the
accuracy of the estimation procedure. Erroneous values for the scale parameter
lead to bad estimates. Also, when dealing with real data analyzed in Peirson et al.
(2003), if we consider a larger range[Mlow,Mup] for the prior on the initial number
of molecules, then the software WinBUGS is not capable of returning any result.
A direct implementation of the MCMC scheme, using for instance a Metropolis-
Hastings algorithm, is to be done to overcome this limitation. This is a current line
of investigation.

5 Conclusion

PCR is a valuable DNA amplification technique used in particular when the specific
target DNA is in low abundance. Its applications in molecular biology are tremen-
dous (Kubista et al., 2006).

Many quantitative methods are available to analyze PCR. They may be sepa-
rated into four broad categories:
A) The standard curve-based method is usually used for quantitative PCR (Livak
and Schmittgen, 2001). It is based on the assumption(H ) that there exists a linear
relationship between the threshold cycle at the exponential phase and the logarithm
of the amount of molecules. It relies on amplification curves of several known di-
lutions of a standard which has to be designed and validated. The generation of a
standard curve relies on the assumption of equality of the efficiencies of each dilu-
tion sample. But dissimilar PCR efficiencies may occur and affect the quantification
procedure (Bar et al., 2003).
B) Under the above assumption(H ), a method relies on regression based on con-
secutive observations from the exponential phase (Ramakers et al., 2003).
C) Using a stochastic model based on the theory of branching processes, the reac-
tion efficiency is inferred by conditional least squares estimators based on consec-
utive observations of the exponential phase (Peccoud and Jacob, 1998, Lalam and
Jacob, 2005), or on consecutive observations spanning from the exponential phase
to the early plateau (Lalam et al. 2004, Lalam, 2006).
D) Quantification procedures rely on a fitting of an individual amplification curve
by an S-shaped function (Goll et al., 2006).

Because the above quantitative methods rely on different parts of amplification
curves, it is difficult to compare them in a quantitative manner. Nevertheless, a
qualitative comparison may be done. Method A is the most popular one but it re-
lies on one data-point from the amplification curve of interest and on a calibration
curve obtained with dilutions of a so-called standard whereas methods B, C, and D
necessitate the single PCR set-up of the DNA molecules of interest. Method B is
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based on consecutive observations from the exponential phase, these observations
are assumed to be above the background noise so that the first observation to be
accounted for is related to some replication cycleh, with h typicallly in the range
[15,25]. Method C also relies on successive observations starting at some repli-
cation cycleh such that, from this cycle on, the measurement error is negligeable
relatively to the signal emitted by the present DNA molecules. Data from the expo-
nential phase are considered when the Galton-Watson model is assumed (Peccoud
and Jacob, 1998) whereas data from the exponential phase and the linear phase up
to the early plateau phase are used when the population-size dependent branching
model is assumed (Lalam et al., 2004). Similarly, data from the exponential phase
and the linear and plateau phase are used in method D.

The detection technology based on fluorescence is extensively used to monitor
the amplification of the DNA copies of the target. This indirect observation of the
accumulation of DNA templates is subject to measurement error which is not di-
rectly accounted for in most quantification procedures. The quantitative approach
presented in this paper is a development of the methodology belonging to category
C. It separates explicitly the uncertainty from the amplification process (intrinsic
uncertainty) and the uncertainty from the measurement device (observational un-
certainty). Within a Bayesian framework and relying on an individual amplification
curve, we have conducted a simulation analysis to infer the initial quantity of DNA
template molecules, the reaction efficiency, and the parameter of the noise from the
fluorescence measurements considering a Hidden Markov Model followed by the
numbers of DNA molecules amplified by PCR. The method has also been applied
to real data. The analysis relied on a Galton-Watson branching process model of an
amplification by PCR when considering its exponential phase under the assumption
that the measurements were disturbed by a Gaussian white noise. The Bayesian sta-
tistical approach from section 3 allows us to infer quite accurately the parameters
of interest of a simulated PCR amplification curve provided that the proportionality
constant between the fluorescence intensity and the number of DNA molecules is
known, and the variance of the measuring device may be given a relatively informa-
tive prior. These requirements suggest that an accurate quantitative approach based
only on a single PCR set-up is not straightforward. It appears that several auxiliary
PCR amplification curves are necessary to determine the scale parameterα and a
plausible range for the varianceσ2 of the noise in order to subsequently infer the
initial number of DNA molecules and the efficiency of a given amplification curve.
The results obtained in this paper with synthetic data are promising. But the out-
puts from the analysis of experimental data from Peirson et al. (2003) are much less
satisfactory, possibly because of an erroneous scale parameterα, or because of an
erroneous assumption concerning the (additive) structure and (Gaussian) distribu-
tion of the errorsεk in (3). It will be of interest to define a procedure to determine
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the scale factor with greater precision. It will also be challenging to investigate the
structure and distribution of the errors in (3), and to demonstrate the applicability
of the presented statistical method to analyze experimental PCR data from a wider
range of PCR measuring platforms.
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[5] Capṕe Olivier, Moulines Eric, Ryd́en Tobias, Inference in Hidden Markov
Models, 2005, Springer.

[6] Cortez Karoll J., Fischer Steven H., Fable Gary A., Calhoun Leslie B., Childs
Richard W., Barrett A. John, Bennett John E., Clinical trial of quantitative real-
time Polymerase Chain Reaction for detection of cytomegalovirus in peripheral
blood of allogeneic hematopoietic stem-cell transplant recipients,The Journal of
Infectious Diseases, 2003, 188, 967–972.

[7] Crockett Andrew O., Wittwer Carl T., Fluorescein-labeled oligonucleotides for
real-time PCR: using the inherent quenching of deoxyguanosine nucleotides,An-
alytical Biochemistry, 2001, 290, 89–97.

[8] Ephraim Yariv, Merhav Neri, Hidden Markov processes,IEEE Transactions on
Information Theory, 2002, 48, 1518–1569.

[9] Farrington C. Paddy, Kanaan Mona N., Gay Nigel J., Branching process models
for surveillance of infectious diseases controlled by mass vaccination,Biostatis-
tics, 2003, 4, 279–295.

[10] Freeman Willard M., Walker Stephen J., Vrana Kent E., Quantitative RT-PCR:
Pitfalls and potential,BioTechniques, 1999, 26, 112–125.

21

Lalam: Statistics for Q-PCR

Published by The Berkeley Electronic Press, 2007



[11] Gelfand Alan E., Smith Adrian F. M., Sampling-based approaches to calcu-
lating marginal densities,Journal of the American Statistical Association, 1990,
85, 398–409.

[12] Geman Stuart, Geman Donald, Stochastic relaxation, Gibbs distributions, and
the Bayesian restoration of images,IEEE Transactions on Pattern Analysis and
Machine Intelligence, 1984, 6, 721–741.

[13] Gentle Alex, Anastasopoulos Frank, McBrien Neville A., High-resolution
semi-quantitative real-time PCR without the use of a standard curve,BioTech-
niques, 2001, 31, 502–508.

[14] Ginzinger David G., Gene quantification using real-time quantitative PCR: An
emerging technology hits the mainstream,Experimental Hematology, 2002, 30,
503–512.

[15] Goll Rasmus, Olsen Trine, Cui Guanglin, Florholmen Jon R., Evaluation
of absolute quantitation by nonlinear regression in probe-based real-time PCR,
BMC Bioinformatics, 2006, 7:107.

[16] Haccou Patsy, Jagers Peter, Vatutin Vladimir A., Branching processes: varia-
tion, growth, and extinction of populations, 2005, Cambridge University Press.

[17] Jeffreys Harold (1946) An invariant form for the prior probability in estima-
tion problems,Proceedings of the Royal Society of London, Series A, 186, 453–
461.

[18] Kimmel Marek, Axelrod David E., Branching processes in biology, 2002,
Springer.

[19] Krawczak Michael, Reiss Jochen, Schmidtke Jörg, Rosler Uwe, Polymerase
chain reaction: replication errors and reliability of gene diagnosis,Nucleic Acids
Research, 1989, 17, 2197–2201.
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Appendix

We provide the results obtained following the lines indicated in section 4.1 for four
different simulated amplification curves using the same values for the parameters
and the priors defined on page 10. The quantities and figures from the computed
posterior distributions are similar to the ones reported in section 4.1.
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Simulated amplification curve 2:

Parameter Mean Standard deviation MC error 2.5% Median 97.5%

X0 30.95 1.966 0.02941 27 31 35
p 0.7975 0.00243 9.291 10−5 0.7926 0.7975 0.8022

σ2 145.4 48.78 0.692 71.89 138.3 258.4

Table 6: Summary of the marginal posterior distributions.

Figure 7: Marginal kernel density functions ofX0, p, andσ2.

26

Statistical Applications in Genetics and Molecular Biology, Vol. 6 [2007], Iss. 1, Art. 10

http://www.bepress.com/sagmb/vol6/iss1/art10



Parameter Mean Standard deviation MC error 2.5% Median 97.5%

X0 30.9 1.919 0.01631 27 31 35
p 0.7976 0.001953 4.54 10−5 0.7938 0.7976 0.8014

Table 7: Summary of the marginal posterior distributions whenσ2 is known.

Figure 8: Marginal kernel density functions ofX0 andp.

Simulated amplification curve 3:

Parameter Mean Standard deviation MC error 2.5% Median 97.5%

X0 28.13 1.854 0.02742 25 28 32
p 0.801 0.002435 9.232 10−5 0.7962 0.8011 0.8057

σ2 129.8 46.6 0.8346 62.06 121.8 243.8

Table 8: Summary of the marginal posterior distributions.
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Figure 9: Marginal kernel density functions ofX0, p, andσ2.

Parameter Mean Standard deviation MC error 2.5% Median 97.5%

X0 28.14 1.82 0.01575 25 28 32
p 0.8012 0.00208 5.052 10−5 0.7971 0.8012 0.8052

Table 9: Summary of the marginal posterior distributions whenσ2 is known.
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Figure 10: Marginal kernel density functions ofX0 andp.

Simulated amplification curve 4:

Parameter Mean Standard deviation MC error 2.5% Median 97.5%

X0 30.73 1.933 0.0293 27 31 35
p 0.7997 0.002459 9.499 10−5 0.7949 0.7997 0.8044

σ2 160.4 49.9 0.7224 83.46 153.4 275.3

Table 10: Summary of the marginal posterior distributions.
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Figure 11: Marginal kernel density functions ofX0, p, andσ2.

Parameter Mean Standard deviation MC error 2.5% Median 97.5%

X0 30.74 1.923 0.02165 27 31 35
p 0.7998 0.001938 6.466 10−5 0.796 0.7998 0.8036

Table 11: Summary of the marginal posterior distributions whenσ2 is known.
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Figure 12: Marginal kernel density functions ofX0 andp.

Simulated amplification curve 5:

Parameter Mean Standard deviation MC error 2.5% Median 97.5%

X0 30.76 1.927 0.03192 27 31 35
p 0.7989 0.002469 8.959 10−5 0.7939 0.7989 0.8036

σ2 163.4 49.9 0.631 85.13 156.4 278.2

Table 12: Summary of the marginal posterior distributions.
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Figure 13: Marginal kernel density functions ofX0, p, andσ2.

Parameter Mean Standard deviation MC error 2.5% Median 97.5%

X0 30.81 1.924 0.02199 27 31 35
p 0.7989 0.00194 6.479 10−5 0.7951 0.7989 0.8027

Table 13: Summary of the marginal posterior distributions whenσ2 is known.
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Figure 14: Marginal kernel density functions ofX0 andp.
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