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Molecular biomarkers found their way into many research fields, especially in molecular medicine, med-
ical diagnostics, disease prognosis, risk assessment but also in other areas like food safety. Different def-
initions for the term biomarker exist, but on the whole biomarkers are measureable biological molecules
that are characteristic for a specific physiological status including drug intervention, normal or patholog-
ical processes. There are various examples for molecular biomarkers that are already successfully used in
clinical diagnostics, especially as prognostic or diagnostic tool for diseases.

Molecular biomarkers can be identified on different molecular levels, namely the genome, the epige-
nome, the transcriptome, the proteome, the metabolome and the lipidome. With special ‘‘omic’’ technol-
ogies, nowadays often high throughput technologies, these molecular biomarkers can be identified and
quantitatively measured.

This article describes the different molecular levels on which biomarker research is possible including
some biomarker candidates that have already been identified. Hereby the transcriptomic approach will
be described in detail including available high throughput methods, molecular levels, quantitative veri-
fication, and biostatistical requirements for transcriptional biomarker identification and validation.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Identification of molecular biomarkers to distinguish physiolog-
ical conditions or clinical stages is an emerging research field that
has grown substantially during the last years. The main fields in
which molecular biomarker research is performed are clinical diag-
nostics, risk assessment, and therapeutic areas, but also in other
fields like food safety, where the request for biomarkers is coming
into focus [1]. Within the National Institute of Health, a special
‘‘biomarkers definition working group’’ exists which defined the
term biomarker as ‘‘a characteristic that is objectively measured
and evaluated as an indicator of normal biologic processes, patho-
genic processes, or pharmacologic responses to a therapeutic inter-
vention’’ [2]. Biomarkers are classified in few groups as FDA
described below (FDA, qualification process for drug development
tools, 2010; http://www.fda.gov):

A prognostic biomarker is a baseline patient or disease charac-
teristic that categorizes individuals by degree of risk for disease
occurrence or progression. Prognostic biomarkers informs about
ll rights reserved.
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the natural history of the disorder in that particular patient in
the absence of a therapeutic intervention.

A predictive biomarker is a baseline characteristic that catego-
rizes individuals by their likelihood for response to a particular
drug treatment. Such a predictive biomarker is used to identify
whether a given individual is likely to respond to a treatment inter-
vention in a particular way. It may predict a favorable response or
an unfavorable response or adverse event.

A pharmacodynamic or activity biomarker is a dynamic assess-
ment that shows that a biological response has occurred in an indi-
vidual after having received a therapeutic intervention. These
pharmacodynamic biomarkers may be treatment-specific or more
broadly informative of disease response after intervention (FDA,
qualification process for drug development tools, 2010 http://
www.fda.gov) [3].

There are a number of levels on which molecular biomarkers
can be identified, from the beginning of functional protein forma-
tion until the deposition of degradation products. Protein forma-
tion starts with the encoding of the amino acid sequence on
genomic DNA. Epigenetics is an additional field that influences
the generation, formation, and abundance of mRNA and later pro-
teins by modifying genomic DNA. The versatile transcriptome with
all its different components like mRNA, microRNA, short and long
non-coding RNAs is the next level on which dynamic changes on
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the molecular level can occur. The functional proteome itself can
be analyzed and at least the metabolites generated can act as po-
tential biomarkers. Another new field in molecular biomarker dis-
covery is the analysis of lipids and their metabolites.

Nowadays there are multiple laboratory methodologies avail-
able, enabling the analysis of all those putative molecular biomark-
ers in a high throughput manner. Those methods can be summarized
to the ‘‘omic’’ technologies, namely, genomics, epigenomics, trans-
criptomics, proteomics, metabolomics, and lipidomics. The techno-
logical progress in all those ‘‘omic’’ fields allows the identification of
molecular biomarkers in a high number of research areas.

Most research in the field of biomarkers is done in molecular
medicine, where different applications of biomarkers can be distin-
guished. A major field for biomarkers is molecular diagnostics, to
identify diseases as well as to monitor the progression of a disease
[4]. Some simple examples are blood pressure or cholesterol levels
as well as viral load e.g. in HIV diagnostics [2]. Those parameters
can easily be determined with routine methods available in most
diagnostic laboratories. Biomarkers can be used to predict the risk
associated with a particular outcome after an event but also the
progression of a disease, in terms of a survival rate or survival time.
This enables more exact therapeutic decisions, and the reduction of
healthcare costs. There are already DNA based molecular biomark-
ers available to predict the susceptibility of an individual to a dis-
ease e.g. by determining the genotype of specific genes [4]. A
further field is risk assessment. Molecular biomarkers can help to
associate particular risks or prediction to a particular sub-popula-
tion. It is sometimes defined as ‘‘stratification’’ because it allows
separating one sub-population into the total population with a
remarkable biological or medical fact. A classical example of such
application is the detection of Human Papilloma Virus (HPV) in
women. As soon as the HPV infection persists it is predictive for
a higher risk of developing precancerous lesions of the cervix,
which can progress to invasive cervical cancer [5].

The interest on biomarker development is not restricted to
medical diagnostics. Also in the field of food safety the identifica-
tion of specific contaminations is coming into focus [1,6,7]. In all
described fields, high throughput ‘‘omic’’ technologies are useful
for the discovery and identification of molecular biomarkers.

2. ‘‘Omic’’ technologies in biomarker research

Independent on which molecular level biomarkers will be ana-
lyzed – genome, epigenome, transcriptome, proteome, metabolo-
me, and lipidome – there are different important factors that have
to be recognized. The first step is to consider natural occurring bio-
marker variations within populations triggered by age, sex, species,
race, breed, food or feed, immunological status or generally by the
environment. Having ‘‘normal’’ or ‘‘control’’ individuals from a big
population is very important to define if a certain change in the bio-
marker concentration is a real change or within the natural varia-
tion of the ‘‘normal’’ or ‘‘healthy’’ population. Another important
fact is sample integrity and quality which has a tremendous effect
on results regardless on which molecular level the markers are
examined. Therefore constant sample integrity and the proper
quality affirmation are necessary to identify reliable biomarkers.
All in all, the more variables and quality control checks are consid-
ered the more valid the discovered biomarker will be [8,9].

The genetic information for the formation of functional proteins
is encoded on the genomic DNA. This information is fixed after
insemination. The analysis of the genetic code and the SNPs from
any tissue source is useful to predict an individual’s risk to get a
specific disease. For example the predisposition for specific kinds
of cancer can sometimes be determined by analyzing the sequence
of known cancer specific genes. A new and interesting field in
genomic diagnostics is the analysis of circulating DNA, which can
be extracted from any body fluid, like blood, urine or epithelial
swabs [10]. Recent studies showed that minor amounts of fetal
DNA fragments can be found in the plasma of pregnant women.
Those circulating DNAs allow maternal prenatal diagnostics in a
non-invasive form and can be used to identify different genetic dis-
eases in the unborn child, like Down Syndrome, Trisomie 13 or
Trisomie 18 at a very early pregnancy phase [11–13].

Another upcoming field is the molecular analysis on the level of
the epigenome, highly related to the analysis of the genome. Epige-
netics can be defined as the study of heritable changes in gene
expression that are not caused by changes in the sequence of geno-
mic DNA, but by changes in DNA methylation or Histone modifica-
tions [14]. The expression of specific genes is dependent on the
methylation status of its promoter region, whereat methylation
of promoter regions leads to transcriptional repression and unme-
thylated promoters allow the transcription of the gene [15,16]. The
methylation status of different promoter regions has already been
proven to act as potential biomarker for different diseases. For
example methylation analysis of Septin 9 and Vimentin can be
used in the diagnosis of colorectal cancer [15,17–20]. Further,
CDKN2A is a tumor suppressor which could be shown to be inacti-
vated in lung cancer by promoter methylation [15,21] and SHOX2
analysis can help to distinguish between malignant lung cancer
and other non cancerous lung diseases [15]. Overall genome meth-
ylation or single gene methylation analysis are a big challenge, be-
cause it has to be defined which genetic methylation level is
‘‘normal’’ and which one not, dependent on tissue type and devel-
opmental stage. From various studies we know that the methyla-
tion in the fetal and prenatal phase affects the development of
the unborn and has major impact on the later adult physiology
[14]. Interindividual differences in the methylation status of spe-
cific genes are present and there are also examples of genes whose
promoter methylation increases with age [15] and though identifi-
cation of stable epigenetic biomarkers will be difficult.

The next step in the formation process of new proteins is the
transcription of coding genes leading to the formation of mRNAs.
Therefore the analysis of gene expression is the first instance to
analyze influences on the molecular level of target cells. Transcrip-
tion of genes is a very dynamic process being able to adapt rapidly
to external, environmental or physiological changes of target tis-
sues, organs or cells [22]. Thus analyzing the expression of genes
is a very potential way to identify biomarkers to describe the phys-
iological status, a disease, the exposure to drugs, or other exoge-
nous stimuli.

Nowadays it is known that only 1–2% of the human transcrip-
tome encodes for proteins, thus is transcribed to mRNAs [23].
Other, non-coding RNAs are represented by ribosomal RNAs or
transfer RNAs, whose function is already known [24]. But there
are further new non-coding RNA families. Non-coding RNAs can
be subdivided to small non-coding RNAs shorter than 200 nt and
long non-coding RNAs with more than 200 nt [23]. Many of those
non-coding RNAs show regulatory functions. The best known small
RNA molecules are microRNAs (miRNAs), which are known to
interact with mRNAs by complementary base pairing. Dependent
on the degree of complementarity, binding of miRNA to the corre-
sponding mRNA leads to inhibition of translation either by induc-
ing degradation of mRNAs (100% complementarity) or by
inhibiting translation without degradation (<100% complementar-
ity) [25]. The analysis of miRNAs in biomarker discovery is an
upcoming field and there are already several miRNA biomarkers
available, e.g. for diabetes, liver disease or cancer [10,26–29]. The
group of long non-coding RNAs (lncRNAs) are defined as tran-
scripts with no open reading frame, thus non-protein coding [23]
and are also known to have regulatory functions. The most popular
lncRNA in humans is Xist, which mediates the inactivation of one X
Chromosome in females [23,24], and H19, which is only expressed
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from the maternal allele. It is highly expressed during embryonic
development in most tissues of vertebrates and is down regulated
in most tissues after birth [23,30–32]. H19 has also been shown to
be associated with different kinds of cancer [23].

Biomarkers can also be detected on the level of the proteome.
The most established and worldwide used proteomic biomarker
is human choriongonadotropin (hCG) which is secreted by the pla-
centa and therefore only present in blood or urine from pregnant
women, and is thus the perfect marker for early pregnancy [1]. In
the diagnosis of prostate cancer the prostate specific antigen
(PSA) is used as early prognostic marker [33]. Detecting single pro-
teins via immuno assays or chromatographical methods combined
with mass spectrometry is easy once the assay is established. But
the proteome is much more complex than for example the genome,
because proteins are also characterized by multiple functional
group attachments or interactions like protein–DNA or protein–
protein [22]. Thus the analysis of the proteome in the biomarker
field is much more complex than analyzing DNA or RNA.

Another ‘‘omic’’ technology that is getting more and more into
the research focus is metabolomics, the analysis of metabolites
whose occurrence is dependent on diseases, physiological status
or external stimuli [1]. In former days single metabolites were ana-
lyzed using single metabolite assays. Due to technological develop-
ments, multiplexed metabolite measurements are possible using
chromatography combined with mass spectrometry or NMR spec-
troscopy [1]. Promising biomarkers for different types of liver dis-
eases are c-glutamyl dipeptides. It could be shown that analyzing
different levels of those peptides enables the discrimination of nine
different types of liver diseases [34,35]. A further example is the
analysis of L-valine, L-threonine, 3-hydroxybutyric acid, 1-deoxy-
glucose and glycine which enables the separation of colorectal can-
cer patients from healthy individuals [35]. Chen et al. [36] could
show that 1-methyladenosine is a potential biomarker for early
diagnosis of hepatocarcinoma, which would be of high interest, be-
cause late diagnosis leads to a high death rate of this disease. In the
field of food residue analysis, the analysis of the metabolome is a
new approach to detect the misuse of growth promoting agents
in animals. A metabolite pattern could be identified by Courant
et al. [37] which was useful to separate clenbuterol treated calves
from untreated animals. One of those metabolites could be identi-
fied as creatine, which is a first potential marker for the abuse of
clenbuterol in calves.

The lipidomics, a subgroup of metabolomics, presents a very
new ‘‘omic’’ technology studying different lipids profiles and their
metabolites in biological systems. As changes in lipid metabolism
are related to different diseases and disease states, like in Alzhei-
mer disease [38,39]. This technology is an upcoming and promising
field for the identification of biomarkers.

As described, there are different molecular levels on which bio-
markers can be investigated and determined. This article will focus
on the analysis of the transcriptome describing available methods
and examples for the establishment of transcriptional biomarkers
for diseases and in the field of food safety.

3. Transcriptional biomarkers

3.1. Available methods to analyze the transcriptome

To analyze the expression of RNAs, different methods are avail-
able. These methods can be subdivided to targeted and untargeted
methods. Targeted methods enable the analysis of the expression
of single RNAs and untargeted methods are applied for a global
screen and a huge amount of differentially expressed RNAs in
one experiment [7]. Two main technologies for untargeted holistic
transcriptome screening dominate the diagnostic field, namely
gene expression microarrays and RNA-Sequencing.
Gene expression microarrays allow the analysis of the expres-
sion of RNA molecules whose sequence is already known. DNA
fragments (probes) representing specific coding regions of a gene
are immobilized on the surface [40]. After reverse transcription
cDNA is labeled with a fluorescent dye and finally hybridized to
the slide. The color coded cDNA binds to the probes via comple-
mentary base pairing. As there are multiple probes representing
one gene immobilized on the slide, the amount of bound cDNAs
can be determined by the intensity of the fluorescent signal. Spe-
cific software tools enable the analysis of the absolute or relative
gene expression, depending on the applied microarray technology
[40]. With microarray technology, genes whose sequence is known
can be analyzed exon specific and down to various splice variants.
But a high background level and the limited dynamic range of
detection leads to less sensitivity and thus the expression of low
abundant genes is difficult to determine [41].

A relatively new, more sensitive method is RNA-Sequencing
(RNA-Seq), one application of next generation sequencing plat-
forms. Thereby a cDNA library is produced from extracted RNA
and all cDNA fragments are sequenced in a parallel high through-
put manner. Using high sophisticated software tools, the generated
number of short sequence reads will either be aligned to a refer-
ence genome or assembled de novo without having any genomic
sequence available [41,42]. This holistic method is more sensitive
than microarrays because it has no upper limit of quantification,
shows a higher dynamic range of expression levels and has nearly
no background signal. RNA-Seq can be applied for mRNAs or short-
er microRNAs and is sensitive enough to enable the detection of
‘‘one single RNA molecule’’ [41].

To analyze a defined number of genes, targeted methods are
useful. Northern Blot was the first method available for the tar-
geted analysis of expressed genes. Within this method, RNA is sep-
arated via agarose gel electrophoresis and then transferred to a
positive charged blotting membrane. Single stranded nucleic acids,
either DNA or RNA, with the complementary sequence of the target
RNA are labeled either with radioactive isotopes, chemilumines-
cent markers or with fluorescent dyes. With those hybridisation
probes the target RNA can be identified [43].

If an exact RNA quantification in a biological sample is required,
reverse transcription followed by quantitative polymerase-chain-
reaction (RT-qPCR) will be the preferred method of choice. RT-qPCR
is an advancement of original polymerase-chain-reaction (PCR), a
method to amplify a defined unit of DNA using DNA polymerases.
The method of RT-qPCR uses the action of fluorescent dyes to mon-
itor the amplification course of the reaction [44]. Monitoring can
either occur via non-specific fluorescent dyes, like SYBR Green I.
Those dyes intercalate with newly generated double stranded
DNA after amplification, which causes an increase of the fluores-
cence dye signal. Measuring the fluorescence after each PCR cycle
allows the monitoring of the increase of the amount of DNA and
specific analytical strategies enable the calculation of the amount
of starting material [45,46]. As those dyes bind to all double
stranded DNAs, differentiation of the target gene from other unspe-
cifically amplified DNA strands or primer dimers is not possible. An-
other, more specific way is the use of labeled DNA probes, giving a
fluorescent signal upon binding to the specific gene [45]. The use of
those probes also allows the quantification of a panel of genes in
one PCR reaction. Therefore different fluorescent dyes which emit
light that is measurable at different wave lengths are used to label
the DNA probes specific for different genes [47].

3.2. mRNA biomarkers

The search for mRNA biomarkers is already an established
method in different life science fields. In pharmacogenomics it
was successfully applied to establish treatment prediction with



6 I. Riedmaier and M.W. Pfaffl / Methods 59 (2013) 3–9
specific drugs. Hereby the expression of drug sensitive and specific
genes was analyzed to predict, if treatment with a specific drugs
will be promising for the respective individual [22,48]. Using
mRNA gene expression analysis is also helpful in the valid differen-
tiation of types or stages of diseases. Thus different forms of heart
disease, cancer or neuropsychiatric disorders can be distinguished
by analyzing the expression of specific genes [22,48].

The search for gene expression biomarkers is also entering the
field of food safety and residue analysis in food, especially the anal-
ysis of growth promoting agents. Hereby physiological changes,
caused by treatment with anabolic agents are detected on the level
of the transcriptome and those differentially expressed genes
should act as first biomarker candidates [1,6]. There are different
publications available dealing with the analysis of the transcrip-
tome after treatment with anabolic agents. Gene expression was
analyzed in reproductive organs like testis, uterus, ovary or vaginal
epithelial cells, in muscle tissue, liver and blood following admin-
istration of different anabolic substances [49–53]. Up to now, no
single marker gene could be identified for a single substance or
an anabolic substance cocktail in any organ or tissue [6]. In most
studies, a number of genes whose expression was influenced by
treatment could be identified. Hence the identification of a bio-
marker pattern consisting of various expressed genes will be more
promising than finding stand alone single markers. Some authors
deal with the use of biostatistical tools for pattern recognition,
e.g. principal components analysis or cluster analysis to visualize
separation between treated and untreated individuals [49–53].
Hence the identification of biomarker patterns for the identifica-
tion of illegally treated individuals seems to be very promising.

3.3. miRNA biomarkers

Instead of the classical analysis of mRNA the quantitative anal-
ysis of miRNA is more and more used for biomarker establishment.
miRNAs are small non-coding RNA molecules with about 20–22
nucleotides which are involved in post-transcriptional processing
of mRNA. In this way they are able to regulate physiological path-
ways and metabolic processes [54] and therefore impact the entire
cellular physiology, organ development, and tissue differentiation.
Most miRNAs are known to be expressed in a physiological-, tis-
sue-, and disease-specific manner [25]. Due to their short length
they are less sensitive to RNase exposure and hence are more sta-
ble than the longer mRNA with an average length of 2 kb [25]. It is
already proven that miRNAs have the potential in the diagnosis of
specific types of cancer. For example tissue derived from gastroin-
testinal cancer can be differentiated from non-gastrointestinal can-
cer tissue by analyzing specific miRNA profiles [26]. As also
described for mRNA, the miRNA profile characterization gives in-
sights in the progression of specific diseases or the response to a
given therapeutic approach [55,56].

The expression of miRNAs cannot only be measured in tissue or
cell culture samples, they are also present in body fluids, like urine,
blood or even milk [57–60]. Some of those circulating miRNAs are
already known to be specific disease markers, especially for differ-
ent forms of cancer [61–63]. It has been shown, that miR-141 is a
potential plasma marker for prostate cancer [61]. There exists the
hypothesis that tumour cells secrete micro vesicles containing
miRNAs into the blood stream and therefore those circulating miR-
NAs are very potential biomarkers in the field of cancer diagnostics
[58].

As already described for mRNAs, miRNAs are also entering the
field of food safety and residue analysis. In a first study, the expres-
sion of a panel of miRNAs was analyzed in bovine liver after the
administration of growth promoters (trenbolone acetate plus
estradiol) using RT-qPCR arrays. Various miRNAs could be shown
to be highly regulated (up-regulated: miR-34a, miR-181c,
miR-20a, and miR-15a; down-regulated: miR-29c, miR-130a, and
miR-103) in the liver of treated animals. Combining those results
with those already obtained for mRNA expression in the same bio-
logical samples, treated animals could be separated from untreated
individuals using PCA [64]. This study shows that the combined
expression analysis of mRNA and miRNA and their parallel data
analysis is a potential approach for the identification of biomarker
patterns for the treatment with growth promoters.

3.4. lncRNA biomarkers

Non-coding RNAs with a length of more than 200 nt belong to
the group of long non-coding RNAs (lncRNAs). In biomarker re-
search the group of lncRNAs is coming into focus, especially in can-
cer research. Due to its regulatory functions, different potential
lncRNA biomarker candidates are already available.

One of the first identified lncRNAs, H19, is a biomarker for tu-
mors of the esophagus, liver, bladder, colon, and for metastases
in the liver. A loss of methylation in its promoter region leads to
a strong up-regulation of this lncRNA, indicating the presence of
tumor tissue [23,65–67]. Another marker lncRNA is HOTAIR, which
is a prognostic marker and a marker of cancer invasiveness as it is
up to 2000-fold up regulated in primary and metastatic breast can-
cer tissue compared to normal breast tissue. High levels of HOTAIR
are correlated with metastasis and a poor survival rate for the pa-
tient [23,68]. A further candidate is MEG 3, which is expressed in a
high number of tissues in humans whereat it is highly expressed in
the brain and the pituitary gland [23,69,70]. In various brain cancer
types, MEG3 is not detectable at all and in several human cancer
cell lines MEG3 has shown to suppress cell growth, indicating a
role as tumor suppressor [23,70].

Those examples indicate that the role of RNAs is not only to be
an intermediate state between genes and proteins but also show
regulatory functions giving them the potential to act as transcrip-
tional biomarkers in various diagnostic and research fields.

4. Biostatistical tools for biomarker identification

Valid biomarkers hold promise for the increasing success rates
of clinical trials. But the biomarker discovery requires an intensive
search across a broad spectrum of molecular data [71]. The identi-
fication of single biomarkers on the mRNA or the miRNA level is
not possible in most pathological disorders. In such cases a set of
multiple biomarkers must be present to distinguish between spe-
cific disease types, disease states or applied treatments [72]. The
first important question is how to deal with these high-throughput
data sources to get the desired information? One approach is the
integrative data analysis of multiple biomarker levels, herein regu-
lated genes and their characteristic dynamic regulation on various
transcriptomic levels (mRNA, miRNA, and lncRNA). This could help
to generate an integrative gene expression pattern [72,73]. Hence
the second important question is how to get the right transcribed
marker set out of this integrative pattern and finally find the spe-
cific transcriptional biomarker pattern that is visible at a glance?
The best way seems to be the construction of clusters where all
elements (individuals or patients) have similar characteristics.
The data integration has made strides in developing management
and analysis tools for structured biological data, but best practices
are still evolving for the integration of high-throughput data with
less structured data from experimental or clinical studies [71]. To
achieve the goal, different multivariate analysis methods are avail-
able, which are used for biomarker selection and validation,
namely hierarchical cluster analysis (HCA) and principal compo-
nents analysis (PCA) (Fig. 1). With such bioinformatical tools the
visualization of togetherness, treatment groups or expression pat-
terns, in a two or three dimensional graph are possible [1,74].



Fig. 1. Workflow for the identification of transcriptomic biomarkers.
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Some recently published studies used PCA and HCA successfully to
visualize a separation between treated and untreated individuals
by evaluating significantly regulated genes [49–53,64].

4.1. Hierarchical cluster analysis

The preferred used method for the visualization of treatment
groups and/or expression patterns is hierarchical clustering. The
real advantage of hierarchical clustering compared to the direct
visualization methods is that a high dimensionality of the data
set is reduced to a convenient two-dimensional representation of
subject similarities [75,76]. Thereby multiple measured gene tran-
scripts and numerous biological individuals in various treatment
groups can be analyzed in an easy way. HCA is able to classify bio-
logical samples according to their expression profile into different
clusters, or more precisely, the partitioning of a data set into sub-
sets. The goal of clustering is to create subsets that share common
trait that is a matchable expression pattern. The more comparable
the expression pattern of the analyzed samples is, the closer the
position in the cluster. Hierarchical clustering can be performed
either for the expressed gene transcripts or for the other dimen-
sions represented by biological samples or treatment groups.
HCA uses distance measure to identify pairs of individuals showing
high similarity based on the gene expression pattern. Within many
steps, those with the highest similarity are merged in a cluster, and
then the process is repeated. The result of the analysis is a tree den-
drogram displaying the distances between the individuals based
on the similarity of the transcribed biomarkers [76,77]. Using hier-
archical clustering a tree dendrogram can either be designed for
the measured genes (in all biological samples) or for the samples
(based on all measured expressed genes). Using a heatmap analysis
these two classification approaches can be fused, resulting in a
two-dimensional, mostly color-coded description of the whole
experimental matrix (genes � samples). It displays in a very conve-
nient way all samples versus gene expression where each tile is
colored with a different intensity according to all available data.

4.2. Principal components analysis

A further useful biostatistical visualization method to group
expression data and to validate transcriptional biomarkers is prin-
cipal components analysis (PCA). Comparable to HCA, the PCA is a
mathematical procedure that converts a highly complex multidi-
mensional data set into a lower number of variables called princi-
pal components (PC) [45,77]. Mostly a two or three dimensional
graphical data output is favored. The classification of the genes is
based on unscaled gene expression data (mostly Cq values) or
the overall fold change of the gene expression magnitudes [78].
Each analyzed individual will be represented by one spot in the
graphical output file. PCA has effectively been employed to visual-
ize a treatment pattern in veterinary science in bovines [49–53,64].
Applying the integrative approach of analyzing transcribed bio-
markers on multiple layers, herein for mRNA and miRNA, a more
significant expression pattern and a better separation between
the treatment groups could be achieved. A clear separation of the
two treatment groups indicates that PCA is a good tool for pattern
recognition in gene expression biomarker research.

The advantage of PCA in comparison to HCA methods is obvious.
PCA allows a much clearer recognition and more precise differen-
tiation of the treatment groups, because the commonalities in gene
expression pattern are visualized by the symbol interspaces in two
dimensions.

4.3. Software tools

Various software tools are available to perform highly sophisti-
cated multi-dimensional gene expression data analysis, including
HCA and PCA, to identify and validate transcribed biomarkers. On
the one hand stand-alone software can be purchased or freeware
packages are available on the internet.

The ‘‘Genex’’ software package (MultiD, Gothenburg, Sweden)
offers a lot of applications mainly dedicated to real-time PCR data
analysis, to identify and validate transcribed biomarkers on the
mRNA and miRNA level. Genex further supports the correct qPCR
data analysis in a MIQE compliant way [76,79] (http://Genex.-
gene-quantification.info).

The ‘‘Genevestigator’’ software tool (Nebion, Zürich, Switzer-
land) aims to detect specific expression patterns in a multi-dimen-
sional expression space. On the basis of a huge number of
expression data and physiological conditions processed from thou-
sands of Affymetrix microarrays. The intuitive interface allows
obtaining lists of potential biomarker candidate genes that can
then be validated using further implemented Genevestigator anal-
ysis tools or manually in future experimental trials. Genevestigator

http://Genex.gene-quantification.info
http://Genex.gene-quantification.info
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provides several clustering tools for array analysis or meta-profiles,
while the similarity expression pattern is measured across arrays
or physiological conditions [8,9]. In addition a new advanced biclu-
stering method allows identifying groups of genes that have simi-
lar profiles in a subset of conditions, irrespective of their profile
similarity in the other physiological conditions. Recent studies
have shown that biclustering performs better than methods
that require similarity over all conditions [8,9] (http://
www.genevestigator.com).

A further free bioinformatical approach to discover and validate
expressed biomarkers is to use R programming language, which is
summarized in the ‘‘Bioconductor’’ project database (http://
www.bioconductor.org). Bioconductor is an open source, open
development software project to provide tools for the analysis
and comprehension of high-throughput data [80]. There are multi-
ple R packages and meta-data packages available, which provide
the analysis of various data sources, on the genomic, epigenomic,
and transcriptomic level. The broad goal is to provide widespread
access to a full range of powerful statistical and graphical methods
for data analysis. In our particular purpose to analyze transcribed
biomarkers the following packages are interesting. For quantitative
real-time PCR data analysis and normalization a bundle of free pro-
jects are available, e.g. ‘‘HTqPCR’’, ‘‘qpcrNorm’’, ‘‘SLqPCR’’, or
‘‘ddCT’’ (summarized in ‘‘The qpcR library – Analysis of real-time
PCR data using R’’ – http://www.dr-spiess.de/qpcR.html) [81]. Fur-
ther specialized packages for multi-dimensional expression analy-
sis, PCA, HCA or biomarker discovery are available in the database,
e.g. ‘‘BioMark’’ or ‘‘optBiomarker’’ project (http://www.bioconduc-
tor.org/help/search/index.html?q=biomarker).

Comparing the described software packages, ‘‘Genex’’ and
‘‘Genevestigator’’ are working on a windows based environment
and are therefore more intuitive and user friendly. Advantage of
the ‘‘Bioconductor’’ packages is that they are freeware, but expect
an advanced operator who is able to handle and modify the often
very complex text based input script lines. In ‘‘Bioconductor’’ the
graphical output of the results is limited and very rudiment in
appearance.

5. Conclusions

The demand for the development of molecular biomarkers in a
high number of diagnostic and prognostic fields has grown during
the last years. The discovery is based on changes on different
molecular levels due to treatment with drugs, changes in the phys-
iological status, disease state or other pathological processes. The
development of new high throughput methods for the analysis of
biological molecules has enabled screening for those changes on
different molecular levels. Detecting single specific biomarkers like
hCG is only possible in exceptional cases. Today unique biomarker
patterns are used for valid identification. Since the transcription of
genes is a very dynamic process and being able to adapt rapidly to
environmental, physiological or pathological changes, the tran-
scriptome is preferable used for the identification of transcribed
biomarkers. To validate the identified transcribed biomarker set
with highly significance, the application of bioinformatical tools
is necessary. Using biostatistical methods for dimensionality
reduction and pattern recognition, a clear separation between
‘‘normal’’ and ‘‘treated’’ or ‘‘diseased’’ can be achieved and thereby
confirm the identified transcriptional biomarkers. The workflow
for transcriptomic biomarker research is summarized in Fig. 1.
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