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a b s t r a c t

Gene expression analysis by quantitative reverse transcription PCR (qRT–PCR) allows accurate quantifi-
cations of messenger RNA (mRNA) levels over different samples. Corrective methods for different steps in
the qRT–PCR reaction have been reported; however, statistical analysis and presentation of substantially
variable biological repeats present problems and are often not meaningful, for example, in a biological
system such as mouse embryonic stem cell differentiation. Based on a series of sequential corrections,
including log transformation, mean centering, and autoscaling, we describe a robust and powerful stan-
dardization method that can be used on highly variable data sets to draw statistically reliable
conclusions.

Published by Elsevier Inc.

Gene expression analysis by quantitative reverse transcription
PCR (qRT–PCR)1 allows accurate and sensitive measurement of gene
expression levels. qRT–PCR has been used to demonstrate alterations
in gene expression in a wide range of applications such as in genetic
modification of crops, in cancers, during induced immune responses,
and during differentiation of embryonic stem (ES) cells.

Because this method enables high-resolution and sensitive
quantification, corrections for variations in the qRT–PCR workflow
are required to obtain reliable results. Efforts have been made to
standardize the technical variability of the PCR reaction by inclu-
sion of a template normalization step, preferably using multiple
stably expressed reference genes, and by corrections for PCR effi-
ciency and interrun variations, resulting in more reliable experi-
mental data [1–4].

However, standardization of variable experimental replicates
caused by inherent biological variability has not been well studied,
nor has an adequate workaround been proposed. Nevertheless,
assessment of statistical significance requires a standardized data
set because variation in data from multiple replicates (e.g., inde-
pendent biological replicates of an experiment) might not result
in statistically significant differences, even though the biological
effect is clearly discernable in each of the individual replicates.
Here, we describe a data standardization procedure that can be ap-

plied to data sets that display high variation between biological
replicates, enabling proper statistical analysis and drawing rele-
vant conclusions. The proposed data processing procedure is not
new; it has been used successfully for microarray data transforma-
tion, for example, in exploratory analyses such as clustering (in
which the magnitude of differences between the genes should be
disregarded to attribute equal weight to all genes). However, this
procedure has not been recognized as a robust and powerful meth-
od to standardize independent biological replicate experiments so
as to draw statistically sound conclusions from a data set that
otherwise is of limited value due to high interexperimental
variation.

ES cell differentiation is generally accepted as a biological sys-
tem that is often subject to significant experimental variation be-
tween independent replicates because differentiation of ES cells
is not fully controllable even by the addition of specific growth fac-
tors. Differences between biological repeats can occur in these cul-
tures because of the use of different passages of ES cells or by
spontaneous differentiation, leading to substantial variation be-
tween biological replicates while showing a similar trend toward
a particular differentiation status.

By using Brachyury induction by Activin A in embryoid bodies
(EBs) as an example of mouse ES (mES) cell differentiation toward
mesoderm, we illustrate the experimental variability of biological
replicates in this system (Fig. 1). Brachyury induction by 3 ng/ml
Activin A is demonstrated in all experiments using whole-mount
in situ hybridization (WISH) of EBs, whereas higher concentrations
(30 ng/ml) reduce Brachyury expression in each repeat, corroborat-
ing previous studies [5–7] (Figs. 1A and 1B). When performing
qRT–PCR on three independent biological repeats run in the same
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plate to exclude interrun variation, Brachyury induction is observed
in all repeats (Fig. 1C). However, because of high variation between
biological repeats, as is frequently observed in mES cell differenti-
ation experiments, Brachyury induction measured by qRT–PCR is
not statistically significant on calculation of the mean messenger

RNA (mRNA) expression over the three independent experiments
(Fig. 2). The two problematic issues in this experiment are the var-
iation in control expression levels between the various replicates
and the variation in fold induction between biological replicates
as a response to an identical stimulus.

When we compare Experiment 1 with Experiment 3, it is obvi-
ous that control levels are largely different (� eightfold), whereas
Brachyury fold change inductions by 3 ng/ml Activin A are similar
in Experiment 1 and Experiment 3 (Fig. 1C). A second problem is
illustrated between Experiment 1 and Experiment 2, where control
levels are now similar, whereas Brachyury induction is approxi-
mately four times higher in Experiment 1 than in Experiment 2
(Fig. 1C).

When the statistical significance of observed differences be-
tween the conditions and the controls is determined, these two
problems result in high variation of mES cell differentiation data
and, therefore, lead to statistically insignificant results even though
in the three independent experiments Brachyury is clearly induced
(Fig. 1C). Because of this, stem cell biologists often opt to show one
representative example instead of a more reliable average value
with proper error bars or confidence intervals. The observed lack
of statistical significance might erroneously raise the question of
whether Brachyury is truly induced, but our experiments are per-
fectly in line with reports studying the Activin A pathway [5–7].

Because our findings suggest that the lack of statistical signifi-
cance might be caused by the experimental variability of the
mES cell system, we sought to properly standardize the obtained
gene expression data, eliminating or reducing interexperimental
variation. Previously, we reported a first standardization step by
identifying suitable reference genes in the mES cell differentiation
system [8]. Here, we present and apply a standardization proce-
dure for data sets from multiple biological replicates by performing
sequential data transformations, enabling correct assessment of
statistical significance. In Fig. 2, we illustrate the effect of each of
these steps on the mean value and the 95% confidence interval

Fig. 1. Induced Brachyury expression in EBs in the presence of Activin A. Whole-
mount in situ hybridization shows that in EBs cultured in serum-free conditions (A),
Brachyury can be induced significantly by Activin A treatment (3 ng/ml) (B).
Staining is indicated by white arrows. qRT–PCR reveals that, after correction for
Actb (reference gene) expression, Brachyury (Brach) is induced in three independent
biological repeats by low Activin A and is reduced by high Activin A (C). Ct,
threshold cycle value; dCt, delta Ct; ddCt, delta-delta Ct. Biological replicates are
indicated with (1)–(3). Experimental details are discussed in Ref. [7].

Fig. 2. Effect of sequential standardization steps on the statistical significance of Brachyury expression by Activin A in biological repeats. The effect of the sequential
standardization steps on the average and the 95% CI (�95% CI, lower interval, and +95% CI, upper interval) is demonstrated in the table (A) as well as in the figure (B),
representing the average (histograms) and 95% CI (error bars) after the sequential standardization steps (B). P < 0.05 indicates the significance of Brachyury induction or
reduction by the Activin A treatment compared with untreated controls. LT, log transformation; MC, mean centering; AS, autoscaling.
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(CI) calculated at each sequential standardization step performed
on the data of the three biological repeats shown in Fig. 1. The
standardization calculations for the example data set were per-
formed in MS Excel and are provided as supplementary material.

First, we performed a log transformation of the normalized rel-
ative gene expression levels; this makes the data distribution more
symmetric, attributing equal weight to conditions with overex-
pression or underexpression (Fig. 2, black). As such, the influence
of outlier values will also be largely eliminated.

For all log-transformed normalized relative quantities aij from n
experiments i and m conditions j, we calculated the mean expres-
sion level of all conditions j in experiment i as li (Eq. (1)), the stan-
dard deviation of the expression across all conditions j in
experiment i as ri (Eq. (2)), and the mean standard deviation of
all experiments as r (Eq. (3)).
8i 2 f1; . . . ;ng;8j 2 f1; . . . ;mg :

li ¼
Rm

j¼1aij

m
ð1Þ

ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rm

j¼1ðaij � liÞ
2

m� 1

s
ð2Þ

r ¼ Rn
i¼1ri

n
ð3Þ

Log transformation, however, does not correct any of the exper-
imental differences observed between biological repeats in ES cell
differentiation; therefore, the means of each replicate experiment
were mean centered by subtracting the mean normalized Brachyu-
ry relative expression level across all conditions in a given replicate
experiment from that same experiment (Fig. 2, gray; Eq. (4)).

This step does not affect the mean fold induction, but it pro-
vides a correction for the difference in background or control level
between biological repeats. Even though this second step further
reduces variation between replicates caused by different control
levels, the difference in fold change between the experimental con-
ditions still results in statistically insignificant conclusions.

By subsequent autoscaling or equalization of the standard devi-
ation across all conditions in each biological replicate, via division
of the mean-centered values by the experimental standard devia-
tion ri for the same replicate, the influence of varying folds of
induction between experiments is greatly reduced (Eq. (4)).

Autoscaling does, however, require a final correction of the fold
change by multiplying the autoscaled fold changes with the mean
standard deviation of the replicate experiments before autoscaling
so as to make the fold changes reflecting the initial observations,
resulting in standardized and fold change preserved log-trans-
formed relative quantities aij (Fig. 2, white):

aij ¼
aij � li

ri

� �
�r ð4Þ

At this point, statistical significance can be determined by cal-
culation of the 95% CI for a limited number of experimental repli-
cates or by another statistical test (e.g., the nonparametric Mann–
Whitney test for comparing two groups).

To further validate our method, we investigated whether the
sequential standardization steps would lead to false positive out-
comes for noninduced genes by using a data set for the Flk1 gene

of which the expression is not affected by Activin A treatment in
the described mES cell setup [7]. In the supplementary material,
we present the standardization steps performed on Flk1 expres-
sion, illustrating that no statistically significant differences are
found in the case of a nonaffected gene such as Flk1. Thus, we dem-
onstrate that our method allows distinction between positive sam-
ples (induction/reduction in gene expression) and negative
samples (unaffected gene expression) without increasing the rate
of false positives.

The performance of the proposed standardization procedure
was further evaluated on large data sets consisting of at least three
biological replicates that had similar variability to the example
data sets and was found to be extremely adequate in canceling
out interexperimental variation [7].

In summary, we have described a simple method for standard-
izing gene expression data of biological replicates that shows sub-
stantial variation between these replicates, although there is a
clear similar trend. By performing a standardization procedure
based on log transformation, mean centering, and autoscaling, high
interexperimental variation can be canceled out, after which statis-
tical analysis can be used to assess the significance of observed
differences.
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Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.ab.2008.04.036.
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