Proteomics & Bioinformatics Part II

David Wishart University of Alberta

3 Kinds of Proteomics

- Structural Proteomics
 - High throughput X-ray Crystallography/Modelling
 - High throughput NMR Spectroscopy/Modelling
- Expressional or Analytical Proteomics
 - Electrophoresis, Protein Chips, DNA Chips, 2D-HPLC
 - Mass Spectrometry, Microsequencing
- Functional or Interaction Proteomics
 - HT Functional Assays, Ligand Chips
 - Yeast 2-hybrid, Deletion Analysis, Motif Analysis

Historically...

- Most of the past 100 years of biochemistry has focused on the analysis of small molecules (i.e. metabolism and metabolic pathways)
- These studies have revealed much about the processes and pathways for about 400 metabolites which can be summarized with this...

More Recently...

- Molecular biologists and biochemists have focused on the analysis of larger molecules (proteins and genes) which are much more complex and much more numerous
- These studies have primarily focused on identifying and cataloging these molecules (Human Genome Project)

Nature's Parts Warehouse

The Protein Parts List

However...

- This cataloging (which consumes most of bioinformatics) has been derogatively referred to as "stamp collecting"
- Having a collection of parts and names doesn't tell you how to put something together or how things connect -- this is biology

Remember: Proteins Interact

Proteins Assemble

For the Past 10 Years...

- Scientists have increasingly focused on "signal transduction" and transient protein interactions
- New techniques have been developed which reveal which proteins and which parts of proteins are important for interaction
- The hope is to get something like this...

Protein Interaction Tools and Techniques - Experimental Methods

3D Structure Determination

- X-ray crystallography
 - grow crystal
 - collect diffract, data
 - calculate e- density
 - trace chain
- NMR spectroscopy
 - label protein
 - collect NMR spectra
 - assign spectra & NOEs
 - calculate structure using distance geom.

Protein Interaction Domains

http://www.mshri.on.ca/pawson/domains.html

Protein Interaction Domains

http://www.mshri.on.ca/pawson/domains.html

Yeast Two-Hybrid Analysis

- Yeast two-hybrid experiments yield information on protein protein interactions
- GAL4 Binding Domain
- GAL4 Activation Domain
- X and Y are two proteins of interest
- If X & Y interact then reporter gene is expressed

Invitrogen Yeast 2-Hybrid

Example of 2-Hybrid Analysis

- Uetz P. et al., "A Comprehensive Analysis of Protein-Protein Interactions in Saccharomyces cerevisiae" Nature 403:623-627 (2000)
- High Throughput Yeast 2 Hybrid Analysis
- 957 putative interactions
- 1004 of 6000 predicted proteins involved

Example of 2-Hybrid Analysis

- Rain JC. et al., "The protein-protein interaction map of Helicobacter pylori" Nature 409:211-215 (2001)
- High Throughput Yeast 2 Hybrid Analysis
- 261 H. pylori proteins scanned against genome
- >1200 putative interactions identified
- Connects >45% of the H. pylori proteome

Another Way?

- Ho Y, Gruhler A, et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415:180-183 (2002)
- High Throughput Mass Spectral Protein Complex Identification (HMS-PCI)
- 10% of yeast proteins used as "bait"
- 3617 associated proteins identified
- 3 fold higher sensitivity than yeast 2-hybrid

Affinity Pull-down

Transposon Tagging

Protein Arrays

H Zhu, J Klemic, S Chang, P Bertone, A Casamayor, K Klemic, D Smith, M Gerstein, M Reed, & M Snyder (2000). **Analysis of yeast protein kinases using protein chips**. Nature Genetics 26: 283-289

Protein Arrays

Protein Interaction Tools and Techniques - Computational Methods

Sequence Searching Against Known Domains

http://www.mshri.on.ca/pawson/domains.html

Motif Searching Using Known Motifs

Text Mining

- Searching Medline or Pubmed for words or word combinations
- "X binds to Y"; "X interacts with Y";
 "X associates with Y" etc. etc.
- Requires a list of known gene names or protein names for a given organism
- Sometimes called "Textomy"

http://textomy.iit.nrc.ca/

Pre-BIND

- Donaldson et al. BMC Bioinformatics 2003 4:11
- Used Support Vector Machine (SVM) to scan literature for protein interactions
- Precision, accuracy and recall of 92% for correctly classifying PI abstracts
- Estimated to capture 60% of all abstracted protein interactions for a given organism

Rosetta Stone Method

Interologs, Homologs, Paralogs...

- Homolog
 - Common Ancestors
 - Common 3D Structure
 - Common Active Sites
- Ortholog
 - Derived from Speciation
- Paralog
 - Derived from Duplication
- Interolog
 - Protein-Protein Interaction

Finding Interologs

- If A and B interact in organism X, then if organism Y has a homolog of A (A') and a homolog of B (B') then A' and B' should interact too!
- Makes use of BLAST searches against entire proteome of wellstudied organisms (yeast, E. coli)
- Requires list of known interacting partners

A Flood of Data

- High throughput techniques are leading to more and more data on protein interactions
- This is where bioinformatics can play a key role
- Some suggest that this is the "future" for bioinformatics

Interaction Databases

- BIND
 - http://www.blueprint.org/bind/bi nd.php
- DIP
 - http://dip.doe-mbi.ucla.edu/
- MINT
 - http://mint.bio.uniroma2.it/mint/
- PathCalling
 - http://portal.curagen.com/extp c/com.curagen.portal.servlet. Yeast

- BIND Biomolecular Interaction Network **Database**
- Conceived and Developed by Chris Hogue, Tony Pawson, Francis Ouellette
- Designed to capture almost all interactions between biomolecules (large and small)
- Largest database of its kind

BIND Data Model

$$S \xrightarrow{\mathsf{E}} \mathsf{P}$$

BIND Can Encode...

- Simple binary interactions
- Enzymes, substrates and conformational changes
- Restriction enzymes
- Limited proteolysis
- Phosphorylation (reversible)
- Glycosylation
- Intron splicing
- Transcriptional factors

BIND

BIND Details

BIND Details

DIP Database of Interacting Proteins

http://dip.doe-mbi.ucla.edu/

DIP Query Page

DIP Results Page

DIP Results Page

MINT Molecular Interaction Database

http://mint.bio.uniroma2.it/mint/

MINT Results

click

KEGG Kyoto Encyclopedia of Genes and Genomes

http://www.genome.ad.jp/kegg/kegg2.html

KEGG

KEGG

TRANSPATH

http://www.biobase.de/pages/products/transpath.html

BIOCARTA

- www.biocarta.com
- Go to "Pathways"
- Web interactive links to many signalling pathways and other eukaryotic protein-protein interactions

Other Databases

http://www.hgmp.mrc.ac.uk/GenomeWeb/prot-interaction.html

Functional Proteomics: A Three-Pronged Process

Data Mining Backfilling

Exp. Data Collection

Computer Simulation

Simulation: Three Types of Data (Models)

Atomic Scale
0.1 - 1.0 nm
Coordinate data
Dynamic data
0.1 - 10 ns
Molecular dynamics

Meso Scale 1.0 - 10 nm Interaction data Kon, Koff, Kd 10 ns - 10 ms Mesodynamics

Continuum Model 10 - 100 nm Concentrations Diffusion rates 10 ms - 1000 s Fluid dynamics

Cell Simulation with DEs

$$\frac{dx_1}{dt} = k_{11}x_1 + k_{21}x_2 + k_{31}x_3 + \dots$$

$$\frac{dx_2}{dt} = k_{12}x_1 + k_{22}x_2 + k_{32}x_3 + \dots$$

$$\frac{dx_3}{dt} = k_{13}x_1 + k_{23}x_2 + k_{33}x_3 + \dots$$

$$\frac{dx_4}{dt} = k_{13}x_1 + k_{24}x_2 + k_{34}x_3 + \dots$$

Continuum Modelling

- Desire to simulate spatially and temporally (to make movies)
- Use techniques developed for oil and gas resevoir simulation (pumping, diffusion, reaction, pressure -- CMG Inc.)
- Uses theory of non-turbulent fluid dynamics, discretized over small volumes
- Based on measured parameters of real cells, real metabolites, proteins

Continuum Simulation

movie

Cellular Automata (CA)

- Computer modelling method that uses lattices and discrete state "rules" to model time dependent processes
- No differential equations to solve, easy to calculate, more phenomenological
- Simple unit behavior -> complex group behavior
- Can be used to create Mandelbrot figures
- Used to model fluid flow, percolation, reaction + diffusion, traffic flow, ecology

Cellular Automata

Can be extended to 3D lattice

Reaction/Diffusion with Cellular Automata

Another Example of CA

SimCity 2000

CA Simulations of Diffusion + Reaction

CA Simulations of Transport

CA for Trp Repressor

How Big A Computer?

Functional Proteomics

- Mixture of experimental and computational techniques
- Trying to reach a point where functions and interactions can be predicted and modelled
- The future of proteomics (and bioinformatics)